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Abstract

We present a model of parallel Lévy-driven queues that mix their output into a final product;
whatever cannot be mixed is sold on the open market for a lower price. The queues incur holding
and capacity costs and can choose their processing rates. We solve the ensuing centralized
(system optimal) and decentralized (individual station optimal) profit optimization problems.
In equilibrium the queues process work faster than desirable from a system point of view. Several
model extensions are also discussed.

1 Introduction

In many production and assembly systems multiple components, produced in different locations,
are combined to produce a final product. This is often termed as kitting process (see [17]), where
kits are composed of different items produced by different machines. We study a system of two
coupled fluid queues with independent Lévy input which continuously mix their output whenever
possible. The mixed output is sold for a high price while the unmixed product from each station
can also be sold, but for some lower price. We assume that the processing rates can be chosen with
the goal of maximizing the profit in the presence of capacity and holding costs.

Multiqueue systems with some coupling between the queues are only rarely tractable. There
are some two-queue exceptions; see, e.g., the pioneering paper of Fayolle and Iasnogorodski [8] on
two coupled processors, the books [5, 6, 9] on boundary value problems for two-dimensional random
walks and queues, and the PhD thesis of Blanc [2]. In the latter thesis, cf. also [3], Blanc studies a
single server who serves two queues. If, upon completion of a service, both queues are non-empty, the
server serves a pair of customers; if only one queue is non-empty, a customer of that queue is being
served (if the server would wait for an arrival to the empty queue, the system would never reach
steady state). He obtains the generating function of the two-dimensional queue length distribution
by solving a Riemann-Hilbert boundary value problem.

For our problem, such an approach is not suitable because we aim at profit optimization by
using explicit workload expressions. In view of the complexity of the above-mentioned multiqueue
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models, numerical methods are usually employed for their analysis, or some relaxing assumptions
are made (e.g. [17],[18] and [7]). Approximations and asymptotic techniques have also been used
(e.g. [4]). Our fluid model can also be seen as a tractable approximation for a discrete system,
whose performance analysis is otherwise intractable.

The economic analysis involves maximizing utility functions that include profit from throughput
and costs incurred from capacity allocation and holding storage content. This is a classical problem
in queueing analysis, see for example [15] and [19]. The decentralized analysis touches upon the
issue of cooperation, or lack of, between servers, which is surveyed in Chapter 8.1.2 of [10].

The contribution of this paper is providing a tractable model that enables explicit performance
analysis of a system of queues with coupled output. The model is still general in the sense that it
assumes subordinator Lévy input, which includes the classical M/G/1 queue. For two stations with
pure jump input processes we derive the centralized solution when both rates are chosen by a single
system administrator, and the decentralized solution (Nash equilibrium) when stations choose their
rates independently. We find that in equilibrium the stations over-invest in capacity resulting in
more idle time then desired from a system point of view. Note that if only one of the queues is idle
then the output of the busy queue is not mixed and potential higher gains are lost.

The remainder of the paper is organized as follows. In Section 2 we present the model and
preliminary analysis of the mixing dynamics. For two queues with increasing pure-jump Lévy
inputs, the centralized and decentralized optimal processing rates are explicitly derived in Section
3. In Section 4 we discuss and provide details for several extensions of the model. We consider
the joint distribution of the storage process of the mixed output with the two coupled queues. We
also describe how the optimization analysis can be extended to general subordinator input and to
a special case of a larger system with n > 2 symmetric queues that can mix their output. Both of
these extensions require a more algorithmic approach as they involve solving large-scale piecewise-
smooth nonlinear programs. Finally, Section 5 provides a brief summary and discussion of future
research avenues.

2 Model and preliminaries

In what follows, we denote a ∧ b = min(a, b), a ∨ b = max(a, b), a+ = a ∨ 0, a− = a ∧ 0.
For i = 1, 2 let Ji(·) be two independent subordinators (nondecreasing Lévy processes) starting

from zero with Laplace exponents −ηi(α) satisfying for α ≥ 0,

ηi(α) = ciα+

∫
(0,∞)

(
1− e−αx

)
νi(dx) = α

(
ci +

∫ ∞
0

e−αxνi(x,∞)dx

)
with ci ≥ 0 and νi a (Lévy) measure necessarily satisfying

∫
(0,∞)(x ∧ 1) νi(dx) <∞. Let

ρi = EJi(1) = η′i(0) = ci +

∫
(0,∞)

xνi(dx) = ci +

∫ ∞
0

νi(x,∞)dx ,

where η′i(0) ≡ η′i(0+) is the limit from the right at α = 0; we assume that ρi <∞.
Also let Z1(0), Z2(0) be independent nonnegative random variables which are also independent

of the Lévy processes. For ri > ρi let

Li(t) = − inf
0≤s≤t

(Zi(0) + Ji(s)− ris)− ,

Zi(t) = Zi(0) + Ji(t)− rit+ Li(t) .
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Then, Z1(·) and Z2(·) are independent (Markov) processes and it is well known that they have a
stationary/limiting/ergodic distribution so that if Z∗i is a random variable having this distribution
then for α ≥ 0 and i = 1, 2 (see, e.g., [14]),

Ee−αZ
∗
i =

(ri − ρi)α
riα− ηi(α)

=
1− ρi

ri

1− ρi
ri
ηei(α)

,

where
ηei(α) =

1

ρi

(
ci +

∫ ∞
0

e−αxνi(x,∞)dx

)
is the Laplace-Stieltjes transform (LST) of a

(
ci
ρi
, 1− ci

ρi

)
mixture of zero and a distribution having

the density νi(x,∞)/
∫∞

0 νi(y,∞)dy (stationary residual jump sizes, see, e.g. [12]). In fact, it is
clear from the formula and known (e.g. [13]) that Z∗i has a compound geometric distribution. Notice
that Zi(·) can be interpreted as the workload in a queue/buffer with Ji(·) as input process and ri
as fixed service/outflow speed. A special case is the steady state distribution of the waiting time in
an M/G/1 queue.

Now 0 < p1 < 1 units of station 1 need to be mixed with p2 = 1 − p1 units from station 2 in
order to produce one unit of a new product. Station i will receive Ki ≥ 0 for every unit which is
mixed. Whatever output of station i that is not mixable is sold for a price of ki ≥ 0 per unit. It
is clear that at every time unit only one of the two original products can be unmixable. We would
like to compute the income rate from running such an operation and then optimize over r1, r2 under
some additional cost structure.

From the above setup it follows that

Li(t) = (ri − ci)
∫ t

0
1{Zi(s)=0}ds

and thus the cumulative (total) outflow is

Oi(t) = rit− Li(t) = ci

∫ t

0
1{Zi(s)=0}ds+ ri

∫ t

0
1{Zi(s)>0}ds .

This would be false if instead of a nondecreasing Lévy process minus a drift we would have a more
general Lévy process with no negative jumps. That is, if either there is a Brownian component or∫

(0,1] xνi(dx) =∞, then it fails.
When the content levels of the two stations are positive, then the total output rate from station

i is ri, and after some sufficiently small amount of time ε > 0, there has been a release of r1ε and
r2ε from the two stations. Every x units of the mixed product is combined of p1x unit from station
1 and p2x from station 2. Thus the total amount that can be mixed should satisfy pix ≤ riε for
i = 1, 2 and thus the maximal amount is

x =

(
r1

p1
∧ r2

p2

)
ε

and thus the total output from station 1 that was mixed is

p1x = r1ε

(
p1r2

p2r1
∧ 1

)
3



Z1(t)J1(t)

mixed

r1

Z2(t)J2(t)

unmixed

r1p2
p1

r2 − r1p2
p1

Figure 1: The rates of mixed and unmixed output when both buffers are not empty, J1(t), J2(t) > 0,
and r1

p1
< r2

p2
. All of the output of station 1 is mixed and station 2 mixes as much as it can and the

remainder is unmixed.

and similarly for station 2 it is

p2x = r2ε

(
p2r1

p1r2
∧ 1

)
.

Note that in this case at least one of the stations is mixing its entire output while the other may not.
Thus the mixed output rates from stations 1, 2 are either (r1, p2r1/p1) or (p1r2/p2, r2), depending
on whether r1

p1
≤ r2

p2
or r1

p1
≥ r2

p2
, respectively. In the first case, the unmixed product output from

the second station is
r2 −

p2r1

p1
= p2

(
r2

p2
− r1

p1

)
and, similarly, in the second case the unmixed product from the first station is

p1

(
r1

p1
− r2

p2

)
.

If we do not want to break this into cases then the unmixed outputs from the two stations are

p1

(
r1

p1
− r2

p2

)+

, p2

(
r2

p2
− r1

p1

)+

,

respectively. The mixing dynamics are illustrated for an example in Figure 1.
Thus, when the contents of both stations are positive, the income rate for station 1 is

g1(r1, r2) = K1

(
r1 ∧

p1r2

p2

)
+ k1p1

(
r1

p1
− r2

p2

)+

, (1)

and for station 2 it is

g2(r1, r2) = K2

(
p2r1

p1
∧ r2

)
+ k2p2

(
r2

p2
− r1

p1

)+

. (2)

Clearly, when the contents of both stations are zero, the total output rates are ci (what contin-
uously flows in immediately flows out) and thus the same computations lead to (1) and (2) where
ri are replaced by ci. When the content of station 1(2) is positive and that of station 2(1) is zero
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then (1) and (2) hold with c2(c1) replacing r2(r1). The fraction of time station i is not empty is
ρi/ri. Therefore, its total income rate is

fi(r1, r2) =
ρ1

r1

ρ2

r2
gi(r1, r2) +

ρ1

r1

(
1− ρ2

r2

)
gi(r1, c2)

+

(
1− ρ1

r1

)
ρ2

r2
gi(c1, r2) +

(
1− ρ1

r1

)(
1− ρ2

r2

)
gi(c1, c2) .

(3)

Now let us assume that for every unit of time, station i pays ai for every unit of capacity. Also, let
us assume that there is linear holding cost of hi for station i. Denoting σ2

i = −η′′i (0) =
∫∞

0 x2νi(dx),
this results in a long run average cost of hi multiplied by

EZ∗i =
σ2
i

2(ri − ρi)
,

where, from here on, we assume that σ2
i < ∞ for i = 1, 2. Thus, with bi = hiσ

2
i /2, the net profit

for station i is fi(r1, r2)− airi − bi
ri−ρi . Note that when c1 = c2 = 0 we have that

g1(r1, 0) = k1r1 , g1(0, r2) = g2(r1, 0) = 0 , g2(0, r2) = k2r2 ,

and in particular g1(0, 0) = g2(0, 0) = 0. Moreover, if in addition we assume, without loss of
generality, that r1

p1
≤ r2

p2
, then

g1(r1, r2) = K1r1 , g2(r1, r2) = K2
r1p2

p1
+ k2

(
r2 −

r1p2

p1

)
.

We can now insert these values in (3) and and obtain the desired expressions for this case which
become a simpler expression.

3 System optimization

In this section we characterize the optimal processing rates that maximize the profit of the coupled
systems for the special case of no external linear input; c1 = c2 = 0. We first of all do this for
a centralized system in which both queues are controlled by a single entity. This is followed by a
decentralized analysis where each queue can independently choose a rate that maximizes its own
profit.

The stationary income per unit of time for system 1, for r1 > ρ1 and r2 > ρ2, is obtained by
applying Equation (3),

f1(r1, r2) =
ρ1

r1

ρ2

r2
g1(r1, r2) +

ρ1

r1

(
1− ρ2

r2

)
g1(r1, 0) ,

and the stationary utility per unit of time is

u1(r1, r2) := f1(r1, r2)− a1r1 −
b1

r1 − ρ1
.

Similarly, we have that the stationary income per unit of time for system 2 is

f2(r1, r2) =
ρ1

r1

ρ2

r2
g2(r1, r2) +

ρ2

r2

(
1− ρ1

r1

)
g1(0, r2) ,
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and the stationary utility per unit of time is

u2(r1, r2) := f2(r1, r2)− a2r2 −
b2

r2 − ρ2
.

Note that due to the breakpoints in the functions gi, as defined in (1) and (2), ui are piecewise-
smooth nonlinear functions of the processing rates r1 and r2.

Suppose both queues have a single controller, then clearly an optimal solution will satisfy r1 > ρ1

and r2 > ρ2. The system optimal rates (r∗1, r
∗
2) are given by the non-linear program,

max {u1(r1, r2) + u2(r1, r2)} ,
s.t. r1 > ρ1, r2 > ρ2 .

(4)

The decentralized solution we are interested in is a Nash equilibrium: a pair (re1, r
e
2) such that

re1 ∈ arg max
r1>ρ1

{u1(r1, r
e
2)} , re2 ∈ arg max

r2>ρ2
{u2(re1, r2)} . (5)

We first state a lemma that will be useful in characterizing both the optimal and equilibrium
rates. As will be detailed in the next sections, the utilities ui generally have the form B − A

ri
with

respect to ri, where A and B are constants given by the specific parameters in each case.

Lemma 1 For any positive constants (a, b, c, d, e, f), if we consider the three equations

− a+
b

(x− d)2
= 0 , (6)

− c

x2
− a+

b

(x− d)2
= 0 , (7)

− c

x2
− a+

b

(x− d)2
+

e

(x− f)2
= 0 , (8)

then (6) has a unique solution x1 = d+
√

b
a in the interval (d,∞), (7) has a unique solution x2 in

the interval (d,∞), (8) has a unique solution x3 in the interval (d ∨ f,∞), and x2 ≤ x1.

Proof: Straightforward computation yields that (6) has a unique solution x1 = d+
√

b
a . We will

first show the uniqueness of the solution to (8), which further implies a unique solution to (7) by
taking e→ 0. If d < f then we rewrite (8) as

b+ e

(
x− d
x− f

)2

= a(x− d)2 + c

(
1− d

x

)2

.

The right hand side is increasing with x for x > d and as d < f the left hand side is decreasing.
Moreover, as the left hand side is also unbounded as x → f , there exists exactly one solution. If
d ≥ f then, similarly, we rewrite (8) as

b

(
x− f
x− d

)2

+ e = a (x− f)2 + c

(
1− f

x

)2

,

and applying the same argument yields the existence and uniqueness. If x1 is the solution of (6)
then −a + b

(x−d)2
< 0 for all x > x1, hence − c

x2
− a + b

(x−d)2
< 0 for all x > x1, and therefore

x2 ≤ x1.
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3.1 Centralized optimization (c1 = c2 = 0)

From now we assume that r1 > ρ1 and r2 > ρ2, as these are the feasible solutions of (4). Applying
(1) and (2) yields

u1(r1, r2) =

 ρ1

(
ρ2
r2

(K1 − k1) + k1

)
− a1r1 − b1

r1−ρ1 , r1 ≤ r2p1
p2

,

ρ1

(
ρ2p1
r1p2

(K1 − k1) + k1

)
− a1r1 − b1

r1−ρ1 , r1 >
r2p1
p2

,
(9)

and

u2(r1, r2) =

 ρ2

(
ρ1p2
r2p1

(K2 − k2) + k2

)
− a2r2 − b2

r2−ρ2 , r2 ≥ r1p2
p1

,

ρ2

(
ρ1
r1

(K2 − k2) + k2

)
− a2r2 − b2

r2−ρ2 , r2 <
r1p2
p1

.
(10)

Let U(r1, r2) := u1(r1, r2) + u2(r1, r2), then for r1 ≤ r2p1
p2

,

U(r1, r2) = ρ1

(
ρ2

r2
(K1 − k1) + k1

)
+ ρ2

(
ρ1p2

r2p1
(K2 − k2) + k2

)
−

2∑
i=1

[
airi +

bi
ri − ρi

]
,

and for r1 >
r2p1
p2

,

U(r1, r2) = ρ1

(
ρ2p1

r1p2
(K1 − k1) + k1

)
+ ρ2

(
ρ1

r1
(K2 − k2) + k2

)
−

2∑
i=1

[
airi +

bi
ri − ρi

]
.

By taking derivatives,

d

dr1
U(r1, r2) =

{
−a1 + b1

(r1−ρ1)2
, r1 ≤ r2p1

p2
,

−A1

r21
− a1 + b1

(r1−ρ1)2
, r1 >

r2p1
p2

,
(11)

where A1 := ρ1ρ2

(
p1
p2

(K1 − k1) + (K2 − k2)
)
. Similarly,

d

dr2
U(r1, r2) =

{
−A2

r22
− a2 + b2

(r2−ρ2)2
, r2 ≥ r1p2

p1
,

−a2 + b2
(r2−ρ2)2

, r2 <
r1p2
p1

,
(12)

where A2 := ρ1ρ2

(
(K1 − k1) + p2

p1
(K2 − k2)

)
.

Note that Lemma 1 implies that d
dri
U(r1, r2) = 0 has a unique solution on (ρi,∞). Furthermore,

ui(r1, r2) → −∞ as ri → ρi or ri → ∞ and therefore the solution must be a local maximum and
we can solve (4) without the constraints. There are two possible types of optimal solutions (r∗1, r

∗
2)

for this piecewise nonlinear optimization problem:

1. An interior solution such that either r∗1
p1
>

r∗2
p2

or r∗1
p1
<

r∗2
p2
, and both rates are local minima that

solve the first order conditions in the respective ranges.

2. A boundary solution such that r∗1
p1

=
r∗2
p2
. In this case the partial derivatives of the objective

function at (r∗1, r
∗
2) are strictly negative for both coordinates.
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Observe that in the first case of (9) (second case of (10)) the revenue of system 1 (2) is not a
function of r1 (r2), hence if the optimal rate is in this range it is given by

d

dri
U(r1, r2) = 0 ⇔ ai =

bi
(ri − ρi)2

,

which yields r̄i := ρi+
√

bi
ai
. Unsurprisingly, ρ+

√
b
a is the optimal rate that balances costly service

rate and holding costs in an M/G/1 queue (see p.329 of [15] for a proof for the M/M/1 case which
extends trivially to M/G/1).

For the second case of (9) (first case of (10)) the revenue of system 1 (2) is a function of its own
rate. If the optimal rate ri is in this range then it is given by a solution to the first order condition
d
dri
U(r1, r2) = 0. Let r̃i denote this solution and by Lemma 1 we have that it is unique and that

r̃i ∈ (ρi, r̄i).
The optimal solution may also be on the boundary, r

∗
1
p1

=
r∗2
p2
. In this case the optimal solution

solves the one-dimensional problem

max
r>
(
ρ1∧ ρ2p1p2

)
{
U

(
r,
rp2

p1

)}
.

The objective function is now

U(r) := U

(
r,
rp2

p1

)
= ρ1k1 + ρ2k2 +

A1

r
−
(
a1 +

a2p2

p1

)
r − b1

r − ρ1
−

b2p1
p2

r − ρ2p1
p2

.

As U(r) → −∞ as r →
(
ρ1 ∧ ρ2p1

p2

)
, if there is a unique solution to d

drU(r) = 0, then it is a local
and global maximum. The condition can be written as

b1
(r − ρ1)2

+

b2p1
p2(

r − ρ2p1
p2

)2 = a1 +
a2p2

p1
+
A1

r2
, (13)

and by Lemma 1 we have that there is a unique solution that we denote by r̂ .
In conclusion, we can compute the optimal rates by computing all roots (r̄1, r̄2, r̃1, r̃2, r̂) and

(r∗1, r
∗
2) = arg max

(r1,r2)∈
{

(r̄1,r̃2),(r̃1,r̄2),
(
r̂,
r̂p2
p1

)}U(r1, r2) .

3.2 Decentralized optimization (c1 = c2 = 0)

We now consider a competitive setting where each station i is controlled by a different player that
can set the rate ri with the goal of maximizing the expected profit of his own station. The goal is
to derive all Nash equilibria satisfying (5).

Given r2 the best response for player 1 is in exactly one of the two possible cases of (11). As
before, the revenue of queue 1 is not a function of r1 in the first case, hence the optimal rate is
r̄1 = ρ1 +

√
b1
a1
. The second case is also similar to the system optimization with the only difference

8



that the effect on the other queue’s revenue is not taken into account. In particular, if r1 ≥ r2p1
p2

the first derivative is

d

dr1
u1(r1, r2) = −

ρ1ρ2
p1
p2

(K1 − k1)

r2
1

− a1 +
b1

(r1 − ρ1)2
,

and similarly by (12), if r2 ≥ r1p2
p1

,

d

dr2
u2(r1, r2) = −

ρ1ρ2
p2
p1

(K2 − k2)

r2
2

− a2 +
b2

(r2 − ρ2)2
.

Observe that for i = 1, 2, d
dri
ui(r1, r2) = 0 has the same form as (7) in Lemma 1, and therefore has

a single real root in (ρi,∞) and we denote this root by ři, for i = 1, 2.
The pairs (r̄1, ř2) and (ř1, r̄2) are both candidates for equilibrium. There may, however, be other

types of equilibria on the boundary set R := {(r1, r2) : r2
p2

= r1
p1
}. If

lim
r1↑r

d

dr1
u1

(
r1,

rp2

p1

)
≥ 0, lim

r1↓r

d

dr1
u1

(
r1,

rp2

p1

)
≤ 0 , (14)

then there is no incentive for system 1 to deviate. Let R1 denote the set of rates satisfying condition
(14). By applying (11), we have that for every r ∈ R1,

0 ≤ −a1 +
b1

(r − ρ1)2
≤
ρ1ρ2

p1
p2

(K1 − k1)

r2
, (15)

which implies that R1 = [ř1, r̄1], by Lemma 1. If, in addition,

lim
r2↑ rp2p1

d

dr2
u2(r, r2) ≥ 0, lim

r2↓ rp2p1

d

dr2
u2(r, r2) ≤ 0 , (16)

then the pair
(
r, rp2p1

)
is a Nash equilibrium. By applying (12) the condition (16) yields

0 ≤ −a2 +
b2

( rp2p1 − ρ1)2
≤
ρ1ρ2

p2
p1

(K2 − k2)(
rp2
p1

)2 ,

which is equivalent to R2 = {r : rp2
p1
∈ [ř2, r̄2]}. Therefore, the set of all Nash equilibria on the

boundary is given by

Re :=

{(
r,
rp2

p1

)
: r ∈ R1 ∩R2

}
.

We conclude that a Nash equilibrium may have a similar form as the optimal solution of the previous
section, but there are also cases when there is a continuum of Nash equilibria on the boundary. We
summarize our analysis in the Proposition 1 that provides a characterization of the Nash equilibria
in terms of the roots (r̄1, r̄2, ř1, ř2) and also a simple recipe for their computation.

Proposition 1 The Nash equilibrium rates (re1, r
e
2) satisfy:

1. If p1
p2
r̄2 < ř1 then R1 ∩R2 = ∅ and (re1, r

e
2) = (ř1, r̄2) is the unique Nash equilibrium.
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2. If p1
p2
ř2 > r̄1 then R1 ∩R2 = ∅ and (re1, r

e
2) = (r̄1, ř2) is the unique Nash equilibrium.

3. If p1
p2
r̄2 ≥ ř1 and p1

p2
ř2 ≤ r̄1 then R1 ∩R2 6= ∅ and Re is the set of all Nash equilibria.

Proof:

1. If p1
p2
r̄2 < ř1 then (ř1, r̄2) is a Nash equilibrium because both stations are using the optimal

rate in the correct range. Moreover, for any r ∈ R2 we have that rp2p1 ≤ r̄2, hence r ≤ p1
p2
r̄2 < ř1

and therefore r /∈ R1. We conclude that Re = R1 ∩R2 = ∅.

2. Similarly, if p1p2 ř2 > r̄1 then (ř1, r̄2) is a Nash equilibrium. If r ∈ R1 then r ≤ r̄1 <
p1
p2
ř2, hence

r /∈ R2 and Re = R1 ∩R2 = ∅.

3. If p1p2 r̄2 ≥ ř1 and p1
p2
ř2 ≤ r̄1 then for every r ∈ R2,

ř1 ≤
p1

p2
r̄2 ≤ r ≤

p1

p2
ř2 ≤ r̄1 ,

and thus r ∈ R1. This implies that R2 ⊆ R1 and R2 6= ∅ because ř2 ≤ r̄2 by Lemma 1. �

A closer look at the first order conditions enables a comparison of the optimal and the interior
equilibrium solutions. In particular, for the case of r1 >

r2p1
p2

, the term ρ1ρ2
r1

(K2 − k2) in U(r1, r2)
corresponds to a positive externality that queue 1 imposes on the profit of queue 2 which is not
taken into account in the individual optimization. Proposition 2 below asserts that this externality
always leads to higher rates in equilibrium than in the system optimal solution. This means that
in equilibrium the faster server over-invests in capacity which results in longer idle periods and loss
of profit for the slow server.

Proposition 2 The Nash equilibrium processing rates are at least as high as the system optimal
rates: rei ≥ r∗i for i = 1, 2.

Proof: First (i) we show that r̃i ≤ ři for i = 1, 2. This implies the result for interior optimal and
equilibrium rates. Next (ii) we will show that if the optimal solution is in the interior then so is the
Nash equilibrium. Finally (iii) we will show that an optimal solution on the boundary yields lower
rates than all possible equilibria.

(i) By (11),
d

dr1
u1(ř1, r2) = −

ρ1ρ2
p1
p2

(K1 − k1)

ř2
1

− a1 +
b1

(ř1 − ρ1)2
= 0 ,

hence

d

dr1
U(ř1, r2) = −

ρ1ρ2

(
p1
p2

(K1 − k1) + (K2 − k2)
)

ř2
1

− a1 +
b1

(ř1 − ρ1)2
= −ρ1ρ2(K2 − k2)

ř2
1

≤ 0 .

Lemma 1 implies that r̃1 is the unique local (and global) maximum of U(r1, r2) with respect to
r1 ∈ (ρ1,∞), and therefore r̃1 ≤ ř1. The same argument yields that r̃2 ≤ ř2.

(ii) If (r̃1, r̄2) is the optimal solution then ř1 ≥ r̃1 ≥ p2
p1
r̄2, hence (ř1, r̄2) is individually optimal

for both stations, and thus a Nash equilibrium. Furthermore, by Proposition 1, ř1 ≥ p2
p1
r̄2 implies

thatR2 is either an empty set when the inequality is strict, or the singleton ř1 when there is equality.
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Therefore, (ř1, r̄2) is the unique Nash equilibrium and it satisfies r∗i ≤ rei for i = 1, 2. The same
argument yields the result for (r∗1, r

∗
2) = (r̄1, r̃2) and (re1, r

e
2) = (r̄1, ř2).

(iii) If (r∗1, r
∗
2) is on the boundary, i.e., r∗1 = r and r∗2 = p2

p1
r for some r, then by (13),

−a1 −
A1

r2
+

b1
(r − ρ1)2

= −p2

p1

−a2 +
b2(

p2
p1
r − ρ2

)2

 . (17)

The left hand side of (17) equals d
dr1
U(r, r2) in the case of r ≤ p1

p2
r2 and optimality implies that it

is positive, otherwise lowering r would increase the total profit. Therefore, both sides of (17) are
positive. Lemma 1 implies that r ≤ r̃1 ≤ ř1 = min{s : s ∈ R1} and r ≤ p1

p2
= min{s : s ∈ R2}.

Therefore, the optimal rates are lower than those in all possible equilibria. �
In Figure 2 the optimal and equilibrium rates are illustrated for an example with varying ρ1 and

all other parameters fixed. For low levels of ρ1 the optimal and equilibrium rate of the first station
is r̄1 (i.e., re1 = r∗1 = r̄1), and the equilibrium rate in station 2 is higher than the optimal rate, as
discussed previously. For moderate levels of ρ1 we observe boundary solutions where r∗1 = r∗2, and
a continuum of equilibria such that re1 = re2 for an interval Re. For higher levels of ρ1 the optimal
and equilibrium rates of station 2 are lower and both equal r̄2, while the optimal rate at station 1
is a bit lower than the equilibrium rate.

ρ1

0 1 2

1

2

r∗1

re1

re2, r
∗
2

, r∗1re1

r∗2

re2

Re

Every vertical line in the shaded region
corresponds to a continuum of equilibrium
points (r, r).

r∗1 r∗2 re1 re2

Figure 2: The optimal rates (r∗1, r
∗
2) and equilibrium rates (re1, r

e
2) as a function of ρ1 when all other

parameters are fixed: K1 = 3, K2 = 2, k1 = k2 = 1, p1 = p2 = 0.5, ρ2 = 0.7, b1 = b2 = 0.08,
c1 = c2 = 0, a1 = a2 = 0.1
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4 Extensions

There are several natural extensions to consider for the above discussed model and the associated
system optimization problem. First of all, the network structure may be more elaborate with
additional stations for storage of the mixed and unmixed outputs. Moreover, one may be interested
in a system of n > 2 stations that can potentially mix their output. If there are multiple stations
then there are multiple ways to define the mixing process, e.g., all have to be working to mix, any
two stations can mix, or some k out of the n stations are required for mixing. In Section 3 we
assumed that there is no linear input to the stations (c1 = c2 = 0), but if this is not the case then
the optimization analysis is more involved.

In this section we provide some details on three important extensions: 1) considering the joint
distribution of the storage processes in the two stations with an additional storage station of the
mixed product, 2) allowing the external inputs to be general subordinators with positive linear
inputs c1, c2 > 0, and 3) n > 2 stations that potentially mix their products for a higher valued
product.

4.1 Steady state distribution of the mixed product storage process

In this short subsection we assume that the mixed product is transferred (instantly) to a third
station that has its own processing rate. The goal is to be able, under some further restriction, to
compute the joint LST of steady state contents in the stations.

In particular, here we assume that c1 > 0, ν1 = 0 and c2 = 0. That is, the input to station 1 is
a positive linear flow and the input to station 2 is a pure jump subordinator. In this case, ρ1 = c1

and ρ2 =
∫

(0,∞) xν2(dx). Here we assume that the output of the mixed product flows into a third
station which releases fluid at a rate r3. Since the first station becomes empty and remains so after
some finite time, for the purpose of steady state behavior we may assume that Z1(0) = 0 and thus
Z1(t) = 0 for all t ≥ 0. Hence, the output from station 1 is linear at the rate c1. Since the input
to station 2 is a pure jump subordinator, the output rate from station 2 is r2 when it is not empty
and zero when it is. Therefore, the flow into station 3 is c3 := c1

p1
∧ r2
p2

when station 2 is not empty
and zero when it is. The fraction of time station 2 is not empty is ρ2/r2. Thus the long run average
input rate into station 3 is ρ2

r2
c3. Thus, for stability we need to assume that r3 is larger than this

quantity. Now, if r3 ≥ c3, then eventually station 3 will become empty and remain empty from that
time on. This is a trivial case. Hence, we assume that ρ2

r2
c3 < r3 < c3.

Since in this case dL2(t) = r21{Z2(t)=0}dt, we now observe that the third station behaves as
follows:

Z3(t) = Z3(0) + c3

∫ t

0
1{Z2(s)>0}ds− r3t+ L3(t)

= Z3(0) + c3(t− r−1
2 L2(t))− r3t+ L3(t) ,

so that we have

Z2(t) = Z2(0) + J2(t)− r2t+ L2(t) ,

Z3(t) = Z3(0) + (c3 − r3) t− c3r
−1
2 L2(t) + L3(t) ,

where
L3(t) = − inf

0≤s≤t

(
Z3(0) + (c3 − r3)s− c3r

−1
2 L2(s)

)−
.
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Letting

Z̃3(t) =
Z3(t)

c3r
−1
2

, L̃3(t) =
L3(t)

c3r
−1
2

, c̃3 =
c3 − r3

c3r
−1
2

= r2

(
1− r3

c3

)
> 0 ,

gives that
Z̃3(t) = Z̃3(0) + c̃3t− L2(t) + L̃3(t) .

Therefore, the joint structure of (Z2(·), Z̃3(·)) is a special case of the model considered in Section 4
of [11], where the joint steady state LST and the covariance structure were computed explicitly.
Since this only requires substitution in the formulas given there, we omit the details.

4.2 Positive linear inputs: c1, c2 > 0

The stationary income per unit of time for system 1, for r1 > ρ1 and r2 > ρ2, is obtained by
applying Equations (1)-(3). There are six distinct cases:

1. If c1 < r1 ≤ c2p1
p2

< r2p1
p2

, then

f1(r1, r2) = K1

(
ρ1 +

(
1− ρ1

r1

)
c1

)
,

2. if c1 <
c2p1
p2
≤ r1 <

r2p1
p2

, then

f1(r1, r2) = ρ1

(
ρ2

r2
(K1 − k1) + k1

)
+K1c1 −

ρ1

r1

(
K1c1 −

(
1− ρ2

r2

)
(K1 − k1)

p1

p2
c2

)
,

3. if c2p1p2
≤ c1 < r1 <

r2p1
p2

, then

f1(r1, r2) = ρ1

(
ρ2

r2
(K1 − k1) + k1

)
+
ρ2

r2
K1c1 +

(
1− ρ2

r2

)(
k1c1 + (K1 − k1)

p1

p2
c2

)
− ρ1c1

r1

(
ρ2

r2
K1 +

(
1− ρ2

r2

)
k1

)
,

4. if c1 <
c2p1
p2

< r2p1
p2
≤ r1, then

f1(r1, r2) = ρ1k1 +K1c1 +
ρ1

r1

(
(K1 − k1)

p1

p2

(
ρ2 +

(
1− ρ2

r2

)
c2

)
−K1c1

)
,

5. if c2p1p2
≤ c1 <

r2p1
p2
≤ r1, then

f1(r1, r2) = ρ1k1 + (K1 − k1)
p1

p2

(
ρ1ρ2

r1
+

(
1− ρ2

r2

)
c2

)
+

(
1− ρ1

r1

)(
ρ2

r2
K1 +

(
1− ρ2

r2

)
k1

)
c1 ,

6. if c2p1p2
< r2p1

p2
≤ c1 < r1, then

f1(r1, r2) =

(
ρ1 +

(
1− ρ1

r1

)
c1

)
k1 + (K1 − k1)

p1

p2

(
ρ2 +

(
1− ρ2

r2

)
c2

)
.
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Again, the centralized optimization problem (4) is thus a two-dimensional piecewise-smooth
(non-linear) maximization program, but now there are six intervals to search in for a solution. A
brute-force method for finding the globally optimal rates is by solving the two-dimensional con-
strained non-linear optimization problem for each of the six possible ranges and then picking the
solution with the highest objective value.

4.3 Multiple stations: n > 2

Suppose that there are n > 2 parallel queues with independent subordinator inputs Ji(t) for i =
1, . . . , n. For n = 2 we saw that fi is a piecewise non-linear function with six different segments
and the optimal rates can be in any of these segments. For a system of n queues the number of
segments is as the number of order permutations of (c1, . . . , cn, r1, . . . , rn) such that ri > ci for all
i = 1, . . . , n. The number of such permutations is (2n)!

2n . Solving the optimization problem therefore
becomes unfeasible from a computational perspective and approximations or a heuristic approach
are required, as done in [16] for a scheduling problem with a similar structure. Note that one also
needs to specify how mixing works, for example: all stations are required to mix or any two (or
other subset of) stations can combine their output.

A special case that may be tractable is a system of homogeneous queues that all have to mix
in order to produce the higher valued product. Specifically, one could consider the completely
symmetric case with n queues such that pi = 1

n and (ρ, c, a, b,K, k)i = (ρ, c, a, b,K, k) for i =
1, . . . , n. Let Gi(r, c) denote the total income rate when i stations are busy, then

Gi(r, c) =

{
nKr, i = n ,

nKc+ ik(r − c), 1 ≤ i < n .

If the optimal solution is symmetric, all use rate r > ρ, a claim that also needs to be verified, then
the mean income rate f(r) := 1

n

∑n
i=1 fi(r, ..., r) equals

f(r) =

n∑
i=1

(
n

i

)(
ρi
ri

)i(
1− ρi

ri

)n−i
Gi(r, c) = Kc+ (K − k)(r − c)(ρ

r
)n + k(r − c)ρ

r
.

Hence the net profit is given by (the underscore c indicates the dependence on c):

Hc(r) := Kc+ (K − k)(r − c)(ρ
r

)n + k(r − c)ρ
r
− ar − b

r − ρ
,

and its derivative w.r.t. r by

Dc(r) := (K − k)

[
(
ρ

r
)n − n(r − c) ρn

rn+1

]
+ kc

ρ

r2
− a+

b

(r − ρ)2
.

There are examples where Dc(r) has multiple roots that correspond to multiple local maxima or
minima. An exhaustive method for finding the optimal solution involves computing all roots, po-
tentially n + 1 of them, and their respective objective values and then choosing the best. This
is computationally tractable but it is hard to make any qualitative claims. Computing the de-
centralized symmetric solutions can be achieved in similar fashion. However, additional individual
optimality constraints, similar to (14) and (16), have to be applied to ensure that the solution is
indeed an equilibrium. Furthermore, the equilibrium need not be unique as we saw for n = 2 in
Proposition 1.
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5 Conclusion

This paper presents a stochastic fluid model of two Lévy queues with coupled output. The simple
mixing dynamics allow for explicit computation of performance measures such as the expected
income and profit levels as a function of the processing rates. The centralized and decentralized
optimal rates are derived for the special case of inputs without linear drifts. It is shown that there
is over investment in capacity when the stations optimize their profit individually.

Furthermore, we provide details on how the analysis can be extended to more elaborate models.
The generalization to a system with multiple parallel queues with independent Lévy inputs that can
mix their output is straightforward as the storage processes are independent. However, optimization
of such a system becomes computationally hard and this direction calls for more sophisticated
algorithmic approaches that rely on the piecewise-smooth structure presented here.

A challenging question that remains open is what can be said about the joint distribution of the
associated storage process. For the special case of deterministic linear input to one station and a
pure-jump subordinator to the second station, the joint distribution of the storage processes with
the mixed output storage is obtainable (Subsection 4.1) by establishing an equivalence to a fluid
queue studied in [11]. However, when also considering the storage processes for unmixed outputs
it is not clear to the authors if the joint distribution of the storage processes can be obtained, even
for the special case. Relaxing the assumption of independent input to the two queues is also an
important issue to consider as it may not be a reasonable assumption for some applications.

From an economic point of view an additional interesting issue to consider in future work is that
the price of the higher valued product may be endogenous. This occurs for example if the total
value per unit is some K > 0 and the stations have to decide how to split the value between them.
A joint decision on the rate and how to split the value may be formulated as a Nash bargaining
problem or as cooperative game, for example as done in [1] and [20] for service rate pooling in a
queueing network.
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