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Abstract

We introduce two general classes of reflected autoregressive processes, INGAR+ and
GAR+. Here, INGAR+ can be seen as the counterpart of INAR(1) with general thinning
and reflection being imposed to keep the process non-negative; GAR+ relates to AR(1) in
an analogous manner. The two processes INGAR+ and GAR+ are shown to be connected
via a duality relation. We proceed by presenting a detailed analysis of the time-dependent
and stationary behavior of the INGAR+ process, and then exploit the duality relation to
obtain the time-dependent and stationary behavior of the GAR+ process.
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1. Introduction and model description

The primary aim of this paper is to study the transient and stationary behavior of two important
classes of autoregressive processes with reflection at zero. We show that these processes are
connected via a duality relation, so that the analysis of one of them provides results for the
other, and vice versa.
Our first starting point is the well studied INAR(1) process, which is defined by

An+1 = a ◦ An + Jn , n ∈ N0,

withN0 := N∪{0}. Here (Jn)n∈N0 are i.i.d. (independent, identically distributed) non-negative
integer-valued random variables, and the thinning operation ◦ is, as defined in Steutel and van
Harn [15], given by a ◦ X :=

∑X
k=1 Uk , where the random variables Uk are i.i.d. Bernoulli

random variables with mean a ∈ [0, 1]. We refer to e.g. McKenzie [12] and Al-Osh and
Alzaid [1] for seminal contributions and Weiß [16] for more background.
When the process (An)n∈N0 cannot attain negative values, one could consider a reflected ver-
sion of INAR(1), defined by, using the notation x+ := max{x , 0},

An+1 = (a ◦ An + Cn −Wn)+ , n ∈ N0, (1)

with i.i.d. non-negative integer-valued random variables (Cn)n∈N0 , and i.i.d. geometrically
distributed random variables (Wn)n∈N0 . In the sequel, we focus on extending this recursion,
still restricting ourselves to cases in which all An are non-negative integer-valued, which en-
ables us to model a rather general class of stochastic processes. The resulting model has the
potential to be used in any setting featuring a non-negative time series with an autoregressive
correlation structure, and in addition it has obvious applications in e.g. queueing and inventory
theory.
The second starting point is the classical AR(1) process, which has also been extensively
studied in the literature; see e.g. the textbook treatment in Brockwell et al. [6]. It is given
through the recursion

Zn+1 = aZn + In , n ∈ N0,

the (In)n∈N0 being i.i.d. non-negative real-valued random variables, and we assume that a ∈
[0, 1]. As in the INAR(1) case, when the series (Zn)n∈N0 corresponds to quantities that attain
non-negative values only, one could reflect this process at 0. Recently, in Boxma et al. [5] the
process

Zn+1 = (aZn + Yn − Bn)+, n ∈ N0, (2)

was studied, with i.i.d. real-valued non-negative (Yn)n∈N0 , i.i.d. exponentially distributed ran-
dom variables (Bn)n∈N0 , and a ∈ [0, 1). Also this process we will generalize, still restricting
ourselves to cases in which all Zn are non-negative real-valued. Again, this enables us to set
up a rather general class of stochastic processes, with abundant applications across various
scientific disciplines (such as engineering, economics, and the social sciences), specifically
suitable if the time series under study relates to intrinsically non-negative quantities. No-
tice that the boundary case a = 1 corresponds to the waiting time process in a conventional
single-server queue.
Now that we have presented a brief account of existing models, we proceed by describing in
greater detail the processes that we focus on in this paper.
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Description of the INGAR+ process

The first process under consideration is an integer-valued generalized autoregressive process
(An)n∈N0 , reflected at 0. Throughout this paper we refer to it as the INGAR+ process, being
defined as follows. The process (An)n∈N0 has values in N0, and is given by the recursion

An+1 = (Un(An) + Cn −Wn)+ , n ∈ N0, (3)

with (Cn)n∈N0 and (Wn)n∈N0 being two mutually independent sequences of i.i.d. non-negative
integer-valued random variables. It is assumed that Wn has a geometric distribution with
success probability p ∈ (0, 1], meaning that � (Wn = k) = p(1 − p)k−1 for k ∈ N. Moreover,
for n ∈ N0,

Un(m) :=
m∑

k=1

Un,k

denotes the partial sum of m i.i.d. non-negative integer-valued random variables Un,k (where
we assume�

(
Un,k = 0

)
< 1 to avoid trivial situations). In our model the sequences (Un,1)n∈N0 ,

(Un,2)n∈N0 , . . . are assumed independent, and they are in addition independent of (Cn)n∈N0 and
(Wn)n∈N0 . In what follows we use the compact notations U (·), C and W for generic random
variables with distributions equal to those of Un(·), Cn and Wn, respectively.
We throughout impose the following stability condition:

� (U) < 1 and �
(
log(1 + C)

)
< ∞, (S1)

which is shown in Theorem 10 below to be a sufficient condition for ergodicity. We remark
that it turned out a delicate issue to identify a stability condition that is both sufficient and
necessary; a short discussion of this issue is added at the end of Section 3.2.
We mention the following special cases:

1. Let the random variables Un,k be i.i.d. Bernoulli random variables with �
(
Un,k = 1

)
=

a ∈ [0, 1] and let p = 1 (so that Wn = 1 a.s.). Then An+1 = (a ◦ An + Cn − 1)+ and if
we require that Cn ≥ 1 and we write εn = Cn − 1, then we obtain

An+1 = a ◦ An + εn , n ∈ N0,

the defining recursion of the INAR(1) process, cf. Weiß [16].

If we still assume Cn = εn + 1 ≥ 1 and instead of Bernoulli random variables allow
generally distributed Un,k , then we obtain

An+1 = Un(An) + εn , n ∈ N0. (4)

Such an extension of the INAR(1) process was proposed by Latour [11]. Ristić et al.
[14] discuss the case that the increments corresponding to Un(·) have a geometric dis-
tribution; see also Barreto-Souza [4].

2. A rich variety of highly general queueing processes can be embedded in the INGAR+

process. To start with, consider the M/G/1 queue, cf. Cohen [7, Ch. II.5], and let An

denote the number of customers waiting immediately after the beginning of the nth
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service. Let Cn denote the number of customers arriving during the nth service. Then
we obtain the Lindley-type recursion

An+1 = (An + Cn − 1)+ , n ∈ N0,

which is the Un,k ≡ 1 and p = 1 case of the INGAR+ process.

To illustrate the modeling flexibility of INGAR+, consider the following setup. Sup-
pose that each customer requires a positive service time only with probability p and no
service time with probability (1 − p), but every customer still has to wait in line until
her/his turn. Additionally suppose that at service completion each next customer find-
ing itself first in line but not requiring work leaves the system instantly. This means
that the number of customers who leave the system between the nth and (n + 1)st ser-
vice completion equals the geometrically distributed number Wn (with parameter p), but
obviously as long as An + Cn −Wn remains non-negative. We thus obtain the recursion

An+1 = (An + Cn −Wn)+ , n ∈ N0,

which is the Un,k ≡ 1 case of the INGAR+ process.

If additionally right after the beginning of a service all waiting customers decide, inde-
pendently of each other, to stay (with probability a) or to leave (before being served,
that is), we end up with

An+1 = (a ◦ An + Cn −Wn)+ , n ∈ N0,

the INGAR+ case where the Un,k have a Bernoulli distribution. We conclude that our
model covers systems with impatient customers as a special case.

Description of the GAR+ process

The second process we consider in this paper is a real-valued generalized autoregressive pro-
cess (Zn)n∈N0 , with the special feature that it is reflected at 0. We call the resulting object the
GAR+ process; it is formally defined as follows. The process attains values in R+ = [0,∞)
and is defined by the stochastic recursion

Zn+1 = (Sn(Zn) + Yn − Bn)+ , n ∈ N0. (5)

The components featuring in this recursion are defined as follows. In the first place, (Bn)n∈N0

and (Yn)n∈N0 are sequences of i.i.d. real-valued non-negative random variables, that are in
addition independent of each other. It is assumed that Bn has an exponential distribution
with rate λ > 0, i.e., � (Bn ≤ x) = 1 − e−λx for x ≥ 0. We allow the λ = ∞ case where
Bn ≡ 0. As before, we write B and Y for generic random variables with distributions equal
to those of Bn and Yn, respectively. The sequence of processes ((Sn(t))t∈R+ )n∈N0 are i.i.d.
Lévy subordinators, independent of (Bn)n∈N0 and (Yn)n∈N0; we write (S(t))t∈R+ for a generic
stochastic process distributed as (Sn(t))t∈R+ . We assume that the associated Laplace-Stieltjes
transform is �(e−sS(t)) = e−ψ(s)t , where the Laplace exponent is necessarily of the form

ψ(s) = as +

∫ ∞

0

(
1 − e−su) dν(u),
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for some a ≥ 0; to see that it has this structure, recall the Lévy-Itō decomposition, and observe
that increasing Lévy processes lack a Brownian term and contributions due to negative jumps.
We assume that the Lévy measure ν is concentrated on R+ with the additional integrability
constraint

∫ ∞
0 (1 ∧ y) dν(y) < ∞ and exclude the trivial case where ψ(s) ≡ 0, i.e. S(t) ≡ 0.

In this model, we throughout impose the stability condition

� (S(1)) < 1 and �
(
log(1 + Y )

)
< ∞, (S2)

where � (S(1)) is the average rate pertaining to S(·) that can be calculated via

� (S(1)) = a +

∫ ∞

0
u dν(u).

In Section 4.2 we will prove sufficiency of (S2), and in addition equivalence with (S1) as a
consequence of the duality introduced in the next section.
Throughout this work we also impose the condition

∃γ > 0 : γ ≥ ψ(γ). (C)

As will be made clear in the next section, (C) guarantees the existence of a meaningful trans-
formation between the GAR+ and INGAR+ processes. In Remark 5 we discuss how to deal
with the situation when (C) does not hold.
The GAR+ process covers the following special cases:

1. If we assume that S(t) = at for some a ∈ [0, 1) and Bn ≡ 0 (which can be achieved by
picking λ = ∞), then (5) becomes

Zn+1 = aZn + Yn , n ∈ N0.

This describes a classical autoregressive process of AR(1) type; see for more back-
ground for instance Brockwell et al. [6].

2. In the case where S(t) = t the recursion (5) is equivalent to the classical Lindley recur-
sion (see e.g. Asmussen [2, p. 92]):

Zn+1 = (Zn + Yn − Bn)+ , n ∈ N0.

This recursion records the waiting time at customer arrivals in an M/G/1 queue, with
service times Yn and inter-arrival times Bn.

This model was recently extended in Boxma et al. [5], where the case of S(t) = at (with
a ∈ [0, 1)) was studied, leading to the recursion

Zn+1 = (aZn + Yn − Bn)+, n ∈ N0. (6)

Zn could be interpreted as the workload in a queueing model just before the nth cus-
tomer arrival. Such an arrival adds Yn work, but also makes a fixed fraction 1 − a of
the work that is already present obsolete. Importantly, our new GAR+ model covers the
more general case: working with the thinning Sn(Zn) rather than aZn, a random part of
Zn is made obsolete (instead of a deterministic part).
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For any non-negative integer-valued random variable X we introduce its ‘alternate probability
generating function’ (in short APGF, cf. McKenzie [13]) as

GX (z) := �((1 − z)X ), z ∈ [0, 1].

Note that the APGF slightly differs from the commonly used probability generating function;
we use it here, rather than the conventional generating function, for reasons that will become
clear soon. Given a non-negative random variable X , its LST (Laplace-Stieltjes transform) is
given by

ϕX (s) := �(e−sX ), s ≥ 0.

With these definitions in place, APGFs and LSTs are conveniently related to each other, see
Theorem 1 below. The joint APGF and the joint LST of two random variables X and Y are
defined in a similar manner:

GX,Y (z,w) := �((1 − z)X (1 − w)Y ), z,w ∈ [0, 1],

ϕX,Y (s, t) := �(e−sX−tY ), s, t ≥ 0.

In the sequel we write X =d Y if the two random objects X and Y have the same distribution.

Main contributions and organization of the paper

We conclude this introduction by a brief account of the results obtained, and an overview of the
paper. We start in Section 2 by establishing a useful duality relation; see Theorem 1. Another
main result of this section (Theorem 3) concerns the fact that this duality relation is well
adapted to all operations that we use in our definition of reflected autoregressive processes,
namely addition, reflection at zero, and the random sum and subordinator operations U (·) and
S(·). Based on these results, for any GAR+ process we can explicitly construct its INGAR+

counterpart. In Section 3 we obtain expressions for the time-dependent (Theorem 7) and
stationary (Theorem 10) APGFs corresponding to the INGAR+ process. In addition moments
and covariances are obtained. In Section 4 we exploit the duality relation of Section 2 to
obtain expressions for the time-dependent (Theorem 17) and stationary (Theorem 19) LSTs
of the GAR+ process, solely relying on the INGAR+ results of Section 3. We also obtain
various results concerning the joint LST of Zn and Zn+1 and moments. Section 5 contains a
discussion and suggestions for further research.

2. Transforms and duality

In this section we establish a remarkable duality between the INGAR+ model and the GAR+

model. With this duality we can construct for any given GAR+ process an INGAR+ coun-
terpart. Later on in this paper we will use the duality as a device to translate results for the
GAR+ model into results for the INGAR+ model.
We introduce a family (Nγ)γ>0 of transformations that map non-negative random variables
to non-negative integer-valued random variables as follows. Given a non-negative random
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variable X , let Nγ (X ) denote any random variable with a mixed Poisson distribution of the
form

�
(
Nγ (X ) = k | X = x

)
= e−γx (γx)k

k!
, k = 0, 1, 2, . . . ;

see e.g. Grandell [8]. Consequently,

�
(
Nγ (X ) = k

)
=

∫
[0,∞)

e−γx (γx)k

k!
� (X ∈ dx) .

Thus a sample of Nγ (X ) can be obtained by letting (N (t))t≥0 be an independent Poisson
process with rate γ and set Nγ (X ) = N (X ). Although Nγ (X ) actually denotes a class of
random variables with a common distribution, we still write, with minor abuse of notation,
Y = Nγ (X ) to indicate that Y has the same distribution as any member of Nγ (X ). The above
transformation has been used by McKenzie [13] to describe the similarity of INAR(1) and
AR(1) processes.

Theorem 1 (Duality). The APGF of the transformed variable Nγ (X ) is related to the LST of
the original variable X through

GNγ (X ) (s) = ϕX (γs). (7)

In particular, given the relevant expectations and/or variances exist,

�(Nγ (X )) = γ� (X ) , (8)

Var
(
Nγ (X )

)
= γ2Var (X ) + γ� (X ) . (9)

More generally, the joint APGF of the transforms (assuming two independent Poisson trans-
formations) is given by

GNγ1 (X ),Nγ2 (Y ) (s, t) = ϕX,Y (γ1s, γ2t). (10)

Proof. We prove only (10), as (7) is obviously a special case of it. This follows by observing

GNγ1 (X ),Nγ2 (Y ) (s, t) = �
(
(1 − s)Nγ1 (X ) (1 − t)Nγ2 (Y ))

=

∞∑
k=0

∞∑
`=0

∫ ∞

0

∫ ∞

0
e−γ1 x (γ1x)k

k!
e−γ2y

(γ2y)`

`!
(1 − s)k (1 − t)` � (X ∈ dx ,Y ∈ dy)

=

∫ ∞

0

∫ ∞

0
e−γ1 xs−γ2yt

� (X ∈ dx ,Y ∈ dy)

= �
(
e−γ1sX−γ2tY )

= ϕX,Y (γ1s, γ2t).

The claims (8) and (9) follow directly from (7), applying standard rules for deriving moments
from the respective transforms. �

We need the next proposition to establish a relation between (the transforms of) the random
sum U (·) and subordinator S(·) operations which were defined in Section 1. Recall that we
imposed the condition (C), guaranteeing the existence of a γ > 0 such that γ ≥ ψ(γ).
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Proposition 2. Let ν be the Lévy measure as defined in Section 1, and let γ > 0 be such that
γ ≥ ψ(γ). Then

GΘ(s) := 1 −
ψ(γs)
γ

is the APGF of a non-negative integer-valued random variable Θ given by the probabilities

θ0 := 1 −
ψ(γ)
γ

,

θk := a1{k=1} +
γk−1

k!

∫ ∞

0
e−γuuk dν(u), k = 1, 2, 3, . . .

Proof. We first show that the numbers θk are indeed probabilities. Obviously θ0 ≤ 1, and
since γ ≥ ψ(γ) it follows that θ0 ≥ 0, so θ0 is a probability. Moreover, θk ≥ 0 for k ∈ N0 and

∞∑
k=0

θk = 1 −
ψ(γ)
γ

+ a +

∞∑
k=1

γk−1

k!

∫ ∞

0
e−γuuk dν(u)

= 1 −
1
γ

(
ψ(γ) − aγ −

∫ ∞

0

(
1 − e−γu) dν(u)

)
= 1.

The APGF of the non-negative integer-valued random variable Θ is given by

GΘ(s) = 1 −
ψ(γ)
γ

+ (1 − s)a +

∞∑
k=1

(1 − s)k γ
k−1

k!

∫ ∞

0
e−γuuk dν(u)

= 1 −
ψ(γ)
γ

+ (1 − s)a +
1
γ

∫ ∞

0
(1 − e−γu − 1 + e−sγu) dν(u) = 1 −

ψ(γs)
γ

,

thus establishing the claim. �

As the next theorem shows, the introduced transformation is well adapted to all operations we
use to define our autoregressive processes, namely addition, reflection at zero, and the random
sum and subordinator operations U (·) and S(·).

Theorem 3. Let X be a non-negative random variable.

1. If Y is non-negative and independent of X, then

Nγ (X + Y ) =d Nγ (X ) + Nγ (Y ), (11)

with the two random variables on the righthand side being independent.

2. If γ ≥ ψ(γ) and Uk =d Θ for every k ∈ N0, where Θ is as in Proposition 2, then

Nγ (S(X )) =d U (Nγ (X )). (12)

3. Let B be exponential with rate λ > 0, let W be a geometric random variable with
� (W = k) = p(1 − p)k−1, k ∈ N, p ∈ (0, 1], and let both random variables be inde-
pendent of X. Then,

N λ/p ((X − B)+) =d (N λ/p (X ) −W )+. (13)
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Proof. 1. This follows from (7):

GNγ (X+Y ) (s) = ϕX+Y (γs) = ϕX (γs)ϕY (γs) = GNγ (X ) (s)GNγ (Y ) (s),

where the second equality is due to the independence of X and Y .

2. We have by the well-known formulas for subordination (in combination with (7))

GNγ (S(X )) (s) = ϕS(X ) (γs) = ϕX (ψ(γs)) = GNγ (X ) (ψ(γs)/γ)

= GNγ (X ) (1 − (1 − ψ(γs)/γ)) = GU (Nγ (X )) (s). (14)

3. Let γ := λ/p. Using (53) in the appendix in the second and fourth equality, and (7) in
the third equality, we obtain

GN λ/p ((X−B)+) (s) = ϕ(X−B)+ (λs/p) = ϕX (λ) + p
ϕX (λs/p) − ϕX (λ)

p − s

= GN λ/p (X ) (p) + p
GN λ/p (X ) (s) − GN λ/p (X ) (p)

p − s
= G(N λ/p (X )−W )+ (s). �

The main question of this section is: given a GAR+ process (Zn)n∈N0 , can we explicitly
construct an integer-valued counterpart, i.e., an INGAR+ process (An)n∈N0? (And, if yes,
how?) To study this, let S(·), Yn, and λ (defining the GAR+ process (Zn)n∈N0) be given. In a
naïve construction one would take, for some value of γ,

Kn =d Nγ (S(Zn)), Cn =d Nγ (Yn), Wn =d Geom(λ/γ), and An+1 := (Kn + Cn −Wn)+ .

Note that since ψ is concave, if γ′ ≥ ψ(γ′) for some γ′ > 0 (which we have, as Condition (C)
is in place), then γ ≥ ψ(γ) for every γ > γ′. In other words, under Condition (C) one can
always achieve γ ≥ λ. Then indeed, by Theorem 3,

An+1 =d
(
Nγ (S(Zn)) + Nγ (Yn) −Wn

)+
=d

(
Nγ (S(Zn) + Yn) −Wn

)+

=d Nγ ((S(Zn) + Yn − Bn)+) =d Nγ (Zn+1).

However, if we do not carefully select the appropriate Poisson transformations, the joint dis-
tribution of An and An+1 might be different from the required INGAR+-type bivariate relation

(An , An+1) =d
(
An , (Un(An) + Cn −Wn)+) (15)

and hence (An)n∈N0 would not necessarily qualify as an INGAR+ process. In the next theo-
rem, we point out how (An)n∈N0 should be properly defined.

Theorem 4. Let (Zn)n∈N0 be a GAR+ process as in (5). Suppose that the Conditions (S1) and
(S2) hold and that Condition (C) is in place with γ ≥ λ. Then there is an INGAR+ process
(An)n∈N0 as in (3) such that

1. An =d Nγ (Zn),
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2. Un(An) =d Nγ (Sn(Zn)) and the i.i.d. summands Un,k , k ∈ N0, have the same distribu-
tion as Θ in Proposition 2,

3. Cn =d Nγ (Yn),

4. Wn =d Geom(λ/γ).

Proof. We construct An inductively. To this end, let A0 =d Nγ (Z0) and suppose that we al-
ready constructed A1, A2, . . . , An complying with 1–4. Let En be a random variable with
the distribution of Nγ (Sn(Zn) + Yn), but chosen in a way such that jointly (An , En) =d

(An ,Un(An) + Cn), which is possible since En =d Un(An) + Cn by (11) and (12). Let Wn

have a geometric distribution with success probability λ/γ ≤ 1 and set An+1 = (En − Wn)+.
Then (15) holds, i.e., (An)n∈N0 is an INGAR+ process and we also have

An+1 =d Nγ ((Sn(Zn) + Yn − Bn)+) =d Nγ (Zn+1),

by (13). �

Remark 5. Suppose condition (C) is not fulfilled, i.e., γ < ψ(γ) for all γ > 0. Then relation
(12), i.e., Nγ (S(X )) =d U (Nγ (X )), is no longer true if we interpret U (X ) as a random sum.
The reason is that, in (14), 1−ψ(γs)/γ no longer is the APGF of a non-negative integer-valued
random variable. It is still, however, true that

GNγ (S(X )) (s) = ϕS(X ) (γs) = ϕX (ψ(γs)) = GNγ (X ) (ψ(γs)/γ),

implying that whenever Y = Nγ (X ) for some X we can define U (Y ) as any random variable
for which

GU (Y ) (s) = GY (ψ(γs)/γ). (16)

Recalling the above construction we see that A0 =d Nγ (Z0) is permissible, and hence an
appropriate U (A0) can be defined. Continuing with A1, A2, . . .we could define a ‘generalized’
INGAR+ process, where U (·) no longer describes a random sum but some abstract operation.
In what follows, we throughout impose condition (C), so that the random sum interpretation
applies. ^

3. The INGAR+ model

In this section we analyze the INGAR+ model, with as main objective to uniquely characterize
its time-dependent and stationary behavior. Recall that the INGAR+ model is defined by the
recursion

An+1 := (Un(An) + Cn −Wn)+ , (17)

with (Un(·))n∈N0 , (Cn)n∈N0 , and (Wn)n∈N0 as introduced earlier; in particular Wn has a geo-
metric distribution with success probability p. It requires a direct verification to see that the
APGF of the random sum Un(An) is given by GAn (Ψ(s)), where Ψ(s) := 1 − GU (s). The
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function Ψ(·) is increasing and concave with Ψ(0) = 0. We will make frequent use of the
iterates

Ψ
(0) (s) = s, Ψ

(k) (s) = Ψ(Ψ(k−1) (s)), k = 1, 2, . . . .

The time-dependent behavior of An is studied in Section 3.1 and the stationary behavior in
Section 3.2. Joint APGFs and moments are derived in Section 3.3.

3.1. Time-dependent analysis

A specific type of functional difference equation naturally appears in the analysis of the
INGAR+ and GAR+ models. The following lemma gives a solution of this difference equa-
tion, for a sufficiently general setup. The proof is standard, in that it follows directly by
iterating the equation (and is therefore omitted).

Lemma 6. Suppose that, for a given initial value f0, a sequence of functions f = ( fn)n∈N0 is
defined by

fn(s) = π(s) fn−1(Ψ(s)) − %(s) fn−1(Ψ(p)) + κ, n ≥ 1, (18)

for functions π(·) and %(·) and a constant κ. Then

fn(s) = f0(Ψ(n) (s))
n−1∏
i=0

π(Ψ(i) (s))

+ κ

n−1∑
i=0

i−1∏
j=0

π(Ψ( j) (s)) −
n∑

i=1

fn−i (Ψ(p))%(Ψ(i−1) (s))
i−2∏
j=0

π(Ψ( j) (s)), (19)

for n ∈ N0. The values of f j (Ψ(p)) follow recursively by inserting s = Ψ(p) into (19).

We apply the above lemma in order to obtain the APGFs GAn (·), n = 1, 2, . . . , when GA0 (·)
is given. Define

Πn(s) :=
n−1∏
k=0

pGC (Ψ(k) (s))
p − Ψ(k) (s)

, Γn(s) :=
Ψ(n) (s)

p − Ψ(n) (s)
Πn(s), (20)

with empty products to be defined equal to one. Whenever the infinite product limn→∞ Πn(s)
converges we simply write Π∞(s) for its value. The following result provides the APGFs
GAn (·) in terms of the functions Πn(·) and Γn(·) featuring in (20).

Theorem 7. For n = 0, 1, . . . and s ∈ [0, 1],

GAn (s) = GA0 (Ψ(n) (s)) Πn(s) − GC (p)
n−1∑
j=0

GAn− j−1 (Ψ(p)) Γj (s). (21)

The values of GAn (Ψ(p)) follow recursively by inserting s = Ψ(p) into (21); see Remark 9.
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Proof. By rearranging relation (53) in the appendix, we obtain from (17):

GAn+1 (s) =
p

p − s
GUn (An )+Cn (s) −

s
p − s

GUn (An )+Cn (p)

=
pGC (s)
p − s︸   ︷︷   ︸
π(s)

GAn (Ψ(s)) −
sGC (p)
p − s︸   ︷︷   ︸
%(s)

GAn (Ψ(p)). (22)

This function is of the type (18) with κ = 0. �

Remark 8. Since (21) is a consequence of the purely arithmetic Lemma 6, there are no issues
in relation to convergence. Relation (21) is true for all s ∈ [0, 1]. Note that the first term of
the difference on the right-hand side has the same singularities as the second term (which are
the values s for which p = Ψ(k) (s) for some k). It can be verified that these singularities are
removable; each singularity in the first term of the righthand side of (21) is compensated by
that same singularity in the second term of the righthand side. In this respect, observe that
s = p is a removable singularity in (22). ^

Remark 9. Inserting s = Ψ(p) into (21) shows that

GAn (Ψ(p)) = GA0 (Ψ(n+1) (p)) Πn(Ψ(p)) − GC (p)
n−1∑
j=0

GAn− j−1 (Ψ(p)) Γj (Ψ(p)). (23)

With this relation the constants GAn (Ψ(p)) can be found recursively. ^

3.2. Stationary analysis

Now we turn to the stationary analysis. In the analysis, an important role is played by ξ,
denoting the limit as n → ∞ of the probability that Un(An) + Cn −Wn is strictly smaller than
zero, i.e.,

ξ = lim
n→∞

� (Wn > Un(An) + Cn) ,

whenever it exists.

Theorem 10. If (S1) holds, then the INGAR+ process (An)n∈N0 is positive recurrent. If it is
also aperiodic and irreducible, then the stationary APGF is given by

GA(s) = Π∞(s) − ξ Σ(s), (24)

where Σ(s) :=
∑∞

n=0 Γn(s), and

ξ = GC (p) GA(Ψ(p)) =
GC (p) Π∞(Ψ(p))

1 + GC (p) Σ(Ψ(p))
. (25)

Proof. Let the process (A+
n )n∈N0 be defined by A+

0 = A0 and A+
n+1 = Un(A+

n ) + Cn. Then
(A+

n )n∈N0 is a Galton-Watson branching process with immigration. As follows from Heathcote
[9, 10], under (S1) this process is positive recurrent and since it majorizes (An)n∈N0 , the same
follows for our INGAR+ process.
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To determine the APGF of the stationary distribution we use the generating functions

A(r, s) =

∞∑
n=0

rnGAn (s), B(r, s) =

∞∑
n=0

rn βn(s), D(r, s) =

∞∑
n=0

rn
Γn(s), r ∈ (−1, 1),

where βn(s) := GA0 (Ψ(n) (s)) Πn(s). It follows from (23) that

GAn (Ψ(p)) = βn(Ψ(p)) − GC (p)
n−1∑
j=0

GAn− j−1 (Ψ(p)) Γj (Ψ(p)),

and hence, after standard algebraic manipulations,

A(r,Ψ(p)) =
B(r,Ψ(p))

1 + GC (p) rD(r,Ψ(p))
.

Under condition (S1) we have � (U) < 1 and Ψ(n) (s) = O((� (U))n) ↓ 0 as n → ∞; see
Athreya and Ney [3, Theorem 11.1]. It follows that the product

n−1∏
k=0

p
p − Ψ(k) (s)

tends to a finite non-zero limit as n → ∞. Moreover,
∏∞

k=0 GC (Ψ(k) (s)) is the LST of the
limit distribution of the Galton-Watson process (A+

n )n∈N0; see e.g. Heathcote [9]. Hence
βn(s) tends to a finite non-zero limit Π∞(s). The convergence of βn together with Ψ(n) (s) =

O((� (U))n) ↓ 0 implies the convergence of
∑n

k=0 Γk (s) to Σ(Ψ(s)) as n → ∞. Hence, using
Abel’s theorem, we obtain

GA(Ψ(p)) = lim
r↑1

(1 − r) A(r,Ψ(p)) =

lim
r↑1

(1 − r)B(r,Ψ(p))

1 + GC (p) lim
r↑1

rD(r,Ψ(p))
=

Π∞(Ψ(p))
1 + GC (p) Σ(Ψ(p))

,

(26)

and

GA(s) = lim
r↑1

(1 − r) A(r, s) = lim
r↑1

(1 − r) B(r, s) − lim
r↑1

(1 − r)GC (p)D(r, s) A(r,Ψ(p))

= Π∞(s) − GA (Ψ(p)) GC (p) Σ(s).

It remains to prove that ξn = � (Wn > Un(An) + Cn) indeed converges to GC (p) GAn (Ψ(p))
as n → ∞. According to (54) in the appendix and the recurrence relation (17) we obtain

ξn = GUn (An )+Cn (p) = GC (p) GAn (Ψ(p)).

Claim (25) thus follows by sending n to∞. �

Remark 11. Condition (S1) is clearly not necessary in the case where Un ≡ 1. In this case the
INGAR+ process An+1 = (An + Cn −Wn)+ is a reflected random walk and, as is well known,
� (C) < � (W ) ensures positive recurrence. However, it is not obvious how necessary con-
ditions can be derived in the general INGAR+/GAR+ setting. To illustrate the complications
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one encounters in studying the � (U) = 1 case, assume that additionally Var (U) < ∞. One
can show that in this case Ψ(k) (s) ∼ 1/k as k → ∞; see Athreya and Ney [3, Theorem 11.1].
This implies that both main terms in (21), i.e.,

GA0 (Ψ(n) (s)) Πn(s) and GC (p)
n−1∑
j=0

GAn− j−1 (Ψ(p)) Γn(s),

tend to infinity as n → ∞. It follows that it is not clear whether their difference tends to zero,
tends to a finite non-zero limit, or does not converge at all. ^

Remark 12. In passing, we have also shown that

A(r, s) = B(r, s) − GC (p) A(r,Ψ(p)) rD(r, s) = B(r, s) − GC (p)
B(r,Ψ(p)) rD(r, s)

1 + GC (p) rD(r,Ψ(p))
,

as revealed by the proof of Theorem 10.
In case A0 = `, we have that B(r, s) equals B(r, s | `), given by

B(r, s | `) :=
∞∑

n=0

rn (1 − Ψ(n) (s)
)`
Πn(s). (27)

The fact that this is a power in ` will be exploited in the proof of Theorem 16. ^

3.3. Moments and covariance structure

In this subsection we include various results concerning the moments and covariance structure
of the INGAR+ process (An)n∈N0 . As before, ξn is defined by � (Wn > Un(An) + Cn), which
we have seen to equal GC (p) GAn (Ψ(p)).

Theorem 13. The mean and the variance of the INGAR+ process fulfil the following recur-
sions:

� (An+1) = � (U)� (An) + � (C) −
1 − ξn

p
, (28)

Var (An+1) = Var (An)� (U)2 + � (An) Var (U) + Var (C)

−
2ξn

p
(� (An)� (U) + � (C)) +

(1 − ξn)(1 − p + ξn)
p2 . (29)

In stationarity,

� (A) =

� (C) −
1 − ξ

p
1 − � (U)

, (30)

Var (A) =

� (A) Var (U) + Var (C) −
2ξ
p

(� (A)� (U) + � (C)) +
(1 − ξ)(1 − p + ξ)

p2

1 − (� (U))2 .

(31)
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Proof. We start by multiplying (22) by p− s; recalling that ξn = GUn (An )+Cn (p), we obtain by
differentiating with respect to s

−GAn+1 (s) + (p − s)G′An+1
(s) = pG′C (s)GAn (Ψ(s)) + pGC (s)G′An

(Ψ(s))Ψ′(s) − ξn. (32)

Letting s → 0 we obtain

−1 − p� (An+1) = −p� (C) − p� (An)� (U) − ξn ,

from which (28) follows. Moreover, taking another derivative in (32) and letting s → 0 we
obtain

p
(
�(A2

n+1) − �(An+1)
)

+ 2� (An+1) = p
(
�(C2) − �(C)

)
+ 2p� (C)� (An)� (U) +

p
(
�(A2

n) − �(An)
)
� (U)2 − p� (An)

(
�(U) − �(U2)

)
,

which leads to (29). The stationary mean (30) and variance (31) follow by letting n tend to
infinity and solving � (A) and Var (A), respectively. �

Besides the mean and variance of An, we can use similar techniques to obtain insight into
the process’ correlation structure. Our next objective is to evaluate the joint APGF of An and
An+1. It expresses this joint APGF GAn ,An+1 (s, t) in terms of the (univariate) APGF of An,
which is given by Theorem 7. We restrict ourselves to t , p; the result for t = p follows in an
elementary way by taking a limit.

Theorem 14. For t , p,

GAn ,An+1 (s, t) =
p

p − t
GC (t) GAn (1 − (1 − s)GU (t))

−
t

p − t
GC (p) GAn (1 − (1 − s)GU (p)). (33)

Proof. By conditioning we obtain

GAn ,An+1 (s, t) = �
(
(1 − s)An (1 − t)(Un (An )+Cn−Wn )+ )

= �
(
(1 − s)An�

(
(1 − t)(Un (An )+Cn−Wn )+

|Cn ,Wn ,U (An)
))
.

By (53) in the appendix it follows that for every k ∈ N0, provided that p , t,

�
(
(1 − t)(k−Wn )+ )

=
p

p − t
(1 − t)k −

t
p − t

(1 − p)k .

Hence, for p , t,

�
(
(1 − s)An�

(
(1 − t)(Un (An )+Cn−Wn )+

|Cn ,Wn ,U (An)
))

= �
(
(1 − s)An

p
p − t

(1 − t)Un (An )+Cn − (1 − s)An
t

p − t
(1 − p)U (An )+Cn

)
=

p
p − t

GC (t) GA
(
1 − (1 − s)GU (t)

)
−

t
p − t

GC (p) GA
(
1 − (1 − s)GU (p)

)
,

where we used the fact that

�
(
(1 − s)A(1 − t)U (A)) = �

(
(1 − s)A

�
(
(1 − t)U (A) |A

))
= �

(
(1 − s)AGU (A) (t)

)
= �

(
(1 − s)AGU (t)A) = GA(1 − (1 − s) GU (t)). �
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Theorem 15. The covariance of An and An+1 is given by

Cov (An , An+1) = � (U) Var (An) −
ξn

p
� (An) −

1
p

GC (p)GU (p)G′An
(Ψ(p)). (34)

Proof. To derive an expression for � (An An+1), we first take the derivative of (33) with re-
spect to s, to obtain

∂

∂s
GAn ,An+1 (s, t) =

p
p − t

GC (t)G′An
(1 − (1 − s)GU (t)) GU (t)

+
(
1 −

p
p − t

)
GC (p)G′An

(1 − (1 − s)GU (p)) GU (p).

Then taking the derivative with respect to t yields

∂2

∂t∂s
GAn ,An+1 (s, t) =

p
(p − t)2 GC (t) G′An

(1 − (1 − s)GU (t)) GU (t)

+
p

p − t
G′C (t) G′An

(1 − (1 − s)GU (t)) GU (t)

− (1 − s)
p

p − t
GC (t)G′′An

(1 − (1 − s)GU (t))G′U (t) GU (t)

+
p

p − t
GC (t) G′An

(1 − (1 − s)GU (t)) G′U (t)

−
p

(p − t)2 GC (p) G′An
(1 − (1 − s)GU (p)) GU (p).

Letting s ↓ 0 and t ↓ 0 we obtain

� (An An+1) = � (An)
(
� (C) −

1
p

)
+ �

(
A2

n
)
� (U) −

GC (p) G′An
(Ψ(p)) GU (p)

p
. (35)

Then

Cov (An , An+1) =� (U)�
(
A2

n
)

+ � (An)
(
� (C) −

1
p

)
−

1
p

GC (p) GU (p) G′An
(Ψ(p))

− � (An)
(
� (An)� (U) + � (C) −

1 − ξn

p

)
,

which can be checked to equal the righthand side of (34). �

We conclude this section by presenting the joint APGF of A0 and AN , where N is (shifted)
geometrically distributed, i.e., �(N = n) = rn(1 − r) for n ∈ N0 and r ∈ [0, 1]. We assume
that A0 satisfies the equilibrium distribution, characterized in Theorem 10 (which, evidently,
implies that also AN follows the stationary distribution). Combining the above results, we
obtain a representation for GA0 ,AN (t , s) = �((1 − t)A0 (1 − s)AN ), as follows. First observe
that

GA0 ,AN (t , s) = (1 − r)
∞∑

n=0

rn
∞∑
`=0

�((1 − t)A0 (1 − s)An | A0 = `) � (A0 = `)

= (1 − r)
∞∑

n=0

rn
∞∑
`=0

(1 − t)`GAn (s | `) � (A0 = `) ,
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where GAn (s | `) := �((1 − s)An | A0 = `). Relying on Remark 12, and remarking that in
A(r, s) only B(r, s) depends on the distribution of A0,

∞∑
n=0

rnGAn (s | `) =

∞∑
n=0

rn (1 − Ψ(n) (s)
)`
Πn(s)

−
GC (p) rD(r, s)

1 + GC (p) rD(r,Ψ(p))

∞∑
n=0

rn (1 − Ψ(n+1) (p)
)`
Πn(Ψ(p)).

Combining the above elements, and using that A0 obeys the equilibrium distribution, we arrive
after some algebra at the following result.

Theorem 16. The joint APGF of A0 and AN (in stationarity) is given by, with GA(·) as deter-
mined in Theorem 10,

GA0 ,AN (t , s) = (1 − r)
∞∑

n=0

rnGA
(
t + Ψ(n) (s) − tΨ(n) (s)

)
Πn(s) −

(1 − r)
GC (p) rD(r, s)

1 + GC (p) rD(r,Ψ(p))

∞∑
n=0

rnGA
(
t + Ψ(n+1) (p) − tΨ(n+1) (p)

)
Πn(Ψ(p)).

4. The GAR+ model

In this section we investigate the GAR+ model as specified in Section 1:

Zn+1 = (Sn(Zn) + Yn − Bn)+ , (36)

with the random objects (Sn(·))n∈N0 , (Bn)n∈N0 , and (Yn)n∈N0 as introduced earlier; in particu-
lar, we have � (Bn ≤ x) = 1 − e−λx for x ≥ 0. Recall that (S(t))t∈R+ is a Lévy subordinator
with Laplace exponent ψ.
This section has the same structure as the previous one, but, as it will turn out, we will greatly
benefit from the the duality property that was described in Section 2, facilitating direct trans-
lation of the INGAR+ results into their GAR+ counterparts. The time-dependent behavior
of Zn is addressed in Section 4.1, while the stationary behavior is covered by Section 4.2;
joint LSTs and moments are derived in Section 4.3. While our approach heavily relies on the
duality, it is of course also possible to derive the results for GAR+ from scratch, by a similar
iterative approach as the one we developed to analyze the INGAR+ model.

4.1. Time-dependent analysis

We choose a probability p ∈ (0, 1) such that for γ := λ/p the condition γ ≥ ψ(γ) is fulfilled.
Then by Theorem 4 there is a dual INGAR+ process

An+1 = (Un(An) + Cn −Wn)+ ,

when choosing

An =d Nγ (Zn), Un(An) =d Nγ (S(Zn)) (i.e., U1 =d Θ),
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Cn =d Nγ (Yn), Wn =d Geom(p).

This identification enables us to translate INGAR+ results to their GAR+ counterparts, as we
will show below. Since ϕZn (s) = GAn (γs) by (7), we can express the results for generating
functions in terms of Laplace transforms. Also note that Ψ(s) = 1 − GU (s) = ψ(γs)/γ and it
follows that ψ (k) (s) = γΨ(k) (s/γ) and Ψ(k) (s) = ψ (k) (γs)/γ. Define

Π
∗
n(s) :=

n−1∏
k=0

λϕY (ψ (k) (s))
λ − ψ (k) (s)

, Γ
∗
n (s) :=

ψ (n) (s)
λ − ψ (n) (s)

Π
∗
n(s).

The following theorem immediately follows from the duality relations of Section 2 (see, in
particular, Theorem 4) and Theorem 7.

Theorem 17. For n = 0, 1, . . . and s ∈ [0, 1],

ϕZn (s) = ϕZ0 (ψ (n) (s)) Π∗n(s) − ϕY (λ)
n−1∑
j=0

ϕZn− j−1 (ψ(λ)) Γ∗j (s). (37)

The values of ϕZn (ψ(λ)) follow recursively by inserting s = ψ(λ) into (37).

4.2. Stationary analysis

Regarding the stationary behavior we will mimic Theorem 10. First we show that the stability
conditions (S1) and (S2) are equivalent here, if An, Un(An), Cn, and Wn are as defined above.

Lemma 18. (S1) and (S2) are equivalent.

Proof. It follows from Theorem 1 that � (Y ) < ∞ is equivalent to � (C) < ∞. Moreover,
using integration by parts,

�
(
log(1 + Y )

)
=

∫ ∞

0
log(1 + y) � (Y ∈ dy) =

∫ ∞

0

1
1 + y

� (Y > y) dy. (38)

Note that, for any given ε > 0,

1
1 + y

∼
1 − e−εy

y
,

as y → ∞. Hence the integral on the right-hand side of (38) is finite iff∫ ∞

0

1 − e−εy

y
� (Y > y) dy =

∫ ε

0

1 − ϕY (s)
s

ds

is finite for some ε > 0 (where the last equality is a consequence of the observation that
(1 − e−εy)/y =

∫ ε

0 e−sy ds). This finiteness condition is, by our duality, equivalent to∫ ε

0

1
s

(1 − GC (s)) ds < ∞

for some ε > 0. But, due to Heathcote [10], this condition is equivalent to �
(
log C

)
< ∞. �
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The following theorem immediately follows from the duality relations of Section 2 (see, in
particular, Corollary 4) and Theorem 10.

Theorem 19. If (S2) holds then the GAR+ process (Zn)n∈N0 is positive recurrent. If it is also
aperiodic and irreducible then the limit stationary LST is given by

ϕZ (s) = Π
∗
∞(s) − ηΣ∗(s), (39)

where Σ∗(s) :=
∑∞

n=0 Γ
∗
n (s) and

η = � (Z = 0) = ϕY (λ)ϕZ (ψ(λ)) =
ϕY (λ)Π∗∞(ψ(λ))

1 + ϕY (λ)Σ∗(ψ(λ))
. (40)

4.3. Moments and covariance structure

In this subsection we focus on deriving explicit formulas for moments and joint LSTs.

Theorem 20. The mean and the variance of the GAR+ process fulfil the following recursions:

� (Zn+1) = � (S(1))� (Zn) + � (Y ) −
1 − ηn

λ
, (41)

Var (Zn+1) = Var (Zn)� (S(1))2 + � (Zn) Var (S(1)) + Var (Y )

−
2ηn

λ
(� (Zn)� (S(1)) + � (Y )) +

(1 − ηn)(1 + ηn)
λ2 , (42)

where ηn = � (Zn+1 = 0) = � (Bn > S(Zn) + Yn) = ϕY (λ)ϕZn (ψ(λ)). In stationarity,

� (Z ) =

� (Y ) −
1 − η
λ

1 − � (S(1))
, (43)

Var (Z ) =

� (Z ) Var (S(1)) + Var (Y ) −
2η
λ

(� (Z )� (S(1)) + � (Y )) +
(1 − η)(1 + η)

λ2

1 − � (S(1))2 .

(44)

Proof. Just translate Theorem 13 via the duality. Note that

� (An) = γ� (Zn) , � (C) = γ� (Y ) ,

Var (An) = γ2Var (Zn) + γ� (Zn) , Var (Cn) = γ2Var (Yn) + γ� (Yn) ,

� (U) = � (S(1)) , Var (U) = � (S(1)) + γVar (S(1)) − � (S(1))2 .

Moreover, since λ = γp and ψ(γp)/γ = Ψ(p), we have

ηn = ϕYn (λ)ϕZn (ψ(λ)) = GCn (p)GAn (ψ(γp)/γ) = ξn. �

We continue with discussing various results concerning the correlation structure of the (Zn)n∈N0

process. We start by evaluating the joint LST of Zn and Zn+1. It expresses this joint LST
ϕZn ,Zn+1 (s, t) in terms of the (univariate) LST of Zn, which is characterized through Theo-
rem 10. We only cover the case t , λ; if t = λ the result follows by L’Hôpital’s rule.
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Theorem 21. For t , λ,

ϕZn ,Zn+1 (s, t) =
λ

λ − t
ϕY (t)ϕZn (s + ψ(t)) −

t
λ − t

ϕY (λ)ϕZn (s + ψ(λ)). (45)

Proof. By conditioning we obtain

GZn ,Zn+1 (s, t) = �
(
e−sZne−t(Sn (Zn )+Yn−Bn )+ )

= �
(
e−sZn�

(
e−t(Sn (Zn )+Yn−Bn )+

| Sn , Bn , S(Zn)
))
.

By (55), for every z ∈ R,

ϕ(z−B)+ (t) =
λe−t z − te−λz

λ − t
e−t z , λ , t ,

so that

�
(
e−sZn�

(
e−t(Sn (Zn )+Yn−Bn )+

| Sn , Bn , S(Zn)
))

= �
(λe−sZn−t(Sn (Zn )+Yn ) − te−sZn−λ(Sn (Zn )+Yn )

λ − t

)
=

λ

λ − t
ϕY (t)�

(
e−sZn−tSn (Zn )

)
−

t
λ − t

ϕY (λ)�
(
e−sZn−λ(Sn (Zn ))

)
.

(46)

By the definition of ψ(·),

�(e−sS(X )) =

∫
e−ψ(s)x

� (X ∈ dx) = ϕX (ψ(s)),

and

�
(
e−tZn−sSn (Zn )

)
= �

(
�

(
e−tZn−sSn (Zn )

∣∣∣Zn
))

= �
(
e−sZn−ψ(t)Zn

)
= ϕZn (s + ψ(t)).

Now some elementary algebra shows that (46) equals (45), as desired. �

Theorem 22. The covariance of Zn and Zn+1 is given by

Cov (Zn , Zn+1) = � (S(1)) Var (Zn) −
ηn

λ
� (Zn) −

ϕY (λ)
λ

ϕ′Zn
(ψ(λ)). (47)

Proof. Note that the supposed straightforward approach via the duality and using the relation
(10), which leads to Cov (An , An+1) = γ2 Cov

(
Nγ (An), Nγ (An+1)

)
, would yield a wrong

result since a simple transformation (An , An+1) 7→ (Nγ (An), Nγ (An+1)) does not preserve
the dependence structure of the INGAR+ process. Instead we used Theorem 21 and direct
computations, analogous to those underlying Theorem 15. �

The joint LST of Z0 and ZN , with N being geometrically distributed and the process being in
equilibrium at time 0, can be computed as well. As this amounts to paralleling the approach
underlying Theorem 16, we omit this result.
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5. Conclusion and suggestions for further research

In this paper we have introduced and analyzed two general classes of reflected autoregressive
processes, INGAR+ and GAR+. In our approach, a crucial role is played by a powerful duality
relation that connects both classes of processes. We have shown that, despite the models’
general nature, a detailed analysis of the time-dependent and stationary behavior is possible.
We started by analyzing the INGAR+ process, and subsequently we have used the duality
relation to obtain the analogous results for the GAR+ process.
Various options for follow-up research arise. In this study the focus was primarily on trans-
forms and moments, but one may wonder whether, in asymptotic regimes, the (time-dependent
or stationary) distribution function can be explicitly given. The results in [5] suggest potential
scaling limits when approaching the stability limit (i.e., � (U) ↑ 1 and � (S(1)) ↑ 1 for the
INGAR+ and GAR+ model, respectively). In addition, one could try to derive the system’s
tail behavior from the corresponding transforms; e.g. in the regime with heavy-tailed jumps
in the upward direction, Tauberian techniques could be applied. We also aim to investigate
some generalizations of the INGAR+ and GAR+ processes, allowing distributions for Wn and
Bn that are more general than just the geometric and exponential distributions, respectively.

A. Appendix: The APGF and the LST

This appendix covers a set of technical results regarding the APGF of a non-negative integer-
valued r.v. X and the LST of a non-negative r.v. Y ,

GX (s) = �
(
(1 − s)X )

, ϕY (s) = �
(
e−sY )

.

Most of the results are standard, but we have included them for completeness and easy refer-
ence.
Provided the first two moments exist, as s → 0, the expansions

GX (s) = 1 − � (X ) s +
�(X2) − � (X )

2
s2 + o(s2), (48)

ϕY (s) = 1 − � (Y ) s +
�(Y 2)

2
s2 + o(s2), (49)

are valid. It follows that

� (X ) = −G′X (0), � (Y ) = −ϕ′Y (0), (50)

�
(
X2) = G′′X (0) − G′X (0), �

(
Y 2) = ϕ′′Y (0), (51)

Var (X ) = G′′X (0) − G′X (0) − G′X (0)2, Var (Y ) = ϕ′′Y (0) − ϕ′Y (0)2. (52)

Probabilities can be recovered from the APGF if the limit as s → 1 is considered:

� (X = k) =
(−1)k

k!
G(k)

X (1−).

The following results are used several times in the paper; hence we have collected them in this
appendix. Their proof is omitted, as these results follow after straightforward calculations.
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Lemma 23. (i) If X is a non-negative integer-valued random variable and W is an indepen-
dent geometric random variable with success probability p ∈ (0, 1] then

G(X−W )+ (s) = GX (p) + p
GX (s) − GX (p)

p − s
=

p
p − s

GX (s) −
s

p − s
GX (p), (53)

for s , p, and G(X−W )+ (p) = GX (p) − pG′X (p). Moreover,

� (W > X ) = GX (p), � (W ≥ X ) =
1

1 − p
GX (p) −

p
1 − p

GX (1). (54)

(ii) If X is a non-negative random variable and if B has an exponential distribution with
parameter λ > 0, independent of X, then

ϕ(X−B)+ (s) = ϕX (λ) + λ
ϕX (s) − ϕX (λ)

λ − s
=

λ

λ − s
ϕX (s) −

s
λ − s

ϕX (λ), (55)

for λ , s and ϕ(X−B)+ (λ) = ϕX (λ) − λϕ′X (λ). Moreover,

� (B > X ) = ϕX (λ). (56)
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