Gibbsianness related to minimisers of a large deviation rate function

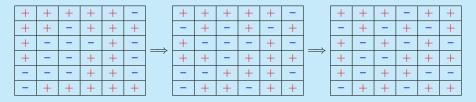
Willem van Zuijlen

Joint work with Frank den Hollander and Frank Redig

Motivation: Gibbs-non-Gibbs transitions on the lattice

 μ_0 Gibbs measure μ_t evolved measure by dynamics over t > 0, $(\mu_t = \mu_0 S_t)$

E.g. μ_0 lsing model (on $\{-1, 1\}^{\mathbb{Z}^2}$) E.g. spin flips $-1 \Rightarrow 1 \& 1 \Rightarrow -1$ with certain rate



Question Is μ_t Gibbs? For which *t*?

Mean-field systems (level-1)

A mean-field system describes countably many spins

- no spatial structure
- equal interaction between spins

As initial system we consider the mean field system $(\mu_{n,0})_{n\in\mathbb{N}}$

$$\mu_{n,0} \propto e^{-nV \circ m_n(x)} d\lambda^n(x) \quad (\text{on } \mathbb{R}^n),$$

where $m_n(x) = \frac{x_1 + \dots + x_n}{n}$ called magnetisation of x, $\lambda \sim \mathcal{N}(0, 1)$

How to describe a "probability" for the infinite number of spins?

Mean-field Gibbsianness

For all
$$x_2, \ldots, x_n \in \mathbb{R}$$
 with $m_{n-1}(x_2, \ldots, x_n) = \alpha$:
$$\mu_{n,0}(\cdot | x_2, \ldots, x_n) \propto e^{-nV(\frac{x}{n} + \frac{n-1}{n}\alpha)} d\mu_{\mathcal{N}(0,1)}(x).$$

sequentially Gibbs \approx asymptotic version of this:

Definition

 $(\mu_{n,0})_{n\in\mathbb{N}}$ is sequentially Gibbs if $\forall \alpha \in \mathbb{R} \exists$ probability γ_{α} s.t.

$$m_{n-1}(x_2^n,\ldots,x_n^n) \to \alpha \implies \mu_{n,0}(\cdot |x_2^n,\ldots,x_n^n) \to \gamma_{\alpha}.$$

Theorem

If $V\in C^1(\mathbb{R},[0,\infty))$, then $(\mu_{n,0})_{n\in\mathbb{N}}$ is sequentially Gibbs with

$$\gamma_{\alpha} \propto e^{-x_1 V'(\alpha)} \mathrm{d}\mu_{\mathcal{N}(0,1)}(x_1),$$

Brownian motions for the mean-field system

Evolve $(\mu_{n,0})_{n \in \mathbb{N}}$ by independent Brownian motions to $(\mu_{n,t})_{n \in \mathbb{N}}$.

Theorem

If $V \in C^1(\mathbb{R}, [0, \infty))$, t > 0, then $(\mu_{n,t})_{n \in \mathbb{N}}$ is sequentially Gibbs $\iff \Psi_{t,\alpha} : r \mapsto V(r) + \frac{r^2}{2} + \frac{(r-\alpha)^2}{2t}$ has a unique global minimiser for all α .

 X_1, X_2, \ldots : initial coordinates Y_1, Y_2, \ldots : final/evolved coordinates

 $\mathbb{P}(m_n(X_1,\ldots,X_n)\approx x \mid m_n(Y_1,\ldots,Y_n)=\alpha)\approx e^{-n(\Psi_{t,\alpha}(x)-C_{t,\alpha})}$

 $\Psi_{t,\alpha}$ (up to constant) is the LDP-rate function of the magnetisation $(m_n(x_1,\ldots,x_n)=\frac{x_1+\cdots+x_n}{n})$ at time 0 given the magnetisation at time t equals α .

Second difference quotient and global minimisers

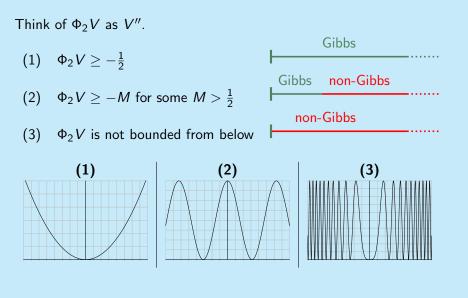
The second difference quotient determines whether $\Psi_{t,\alpha}$ has unique global minimisers for all α .

$$\Phi_2 V(x, y, z) = \frac{1}{z - x} \left(\frac{V(z) - V(y)}{z - y} - \frac{V(y) - V(x)}{y - x} \right) \qquad (x < y < z).$$

Theorem (Summary)

Let $V \in C^1(\mathbb{R}, [0, \infty))$. Then $(\mu_{n,0})_{n \in \mathbb{N}}$ is sequentially Gibbs and for t > 0 TFAE: (a) $(\mu_{n,t})_{n \in \mathbb{N}}$ is sequentially Gibbs. (b) $\Psi_{t,\alpha} : r \mapsto V(r) + \frac{r^2}{2} + \frac{(r-\alpha)^2}{2t}$ has a unique global minimiser for all α . (c) $\Phi_2 V > -\frac{1+t}{2t}$.

Possible scenarios for Gibbsianness $(\mu_{n,t})_{n \in \mathbb{N}}$



Mean-field systems (level-2)

Level-2 mean-field system: $(\rho_n)_{n \in \mathbb{N}}$ with ρ_n a probability measure on \mathcal{X}^n ,

 $\rho_n \propto e^{-nF_n \circ L_n(x)} d\lambda^n(x)$

 $L_n(x) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i} \text{ empirical distribution of } x$ Whenever $F(\zeta) = V(\int z \, \mathrm{d}\zeta(z))$, as $m_n(x) = \frac{1}{n} \sum_{i=1}^n x_i = \int z \, \mathrm{d}[L_n(x)](z)$

$$\rho_n \propto e^{-nV \circ m_n(x)} d\lambda^n(x)$$

Definition

 $(\rho_n)_{n\in\mathbb{N}}$ is sequentially Gibbs if $\forall \zeta \in \mathcal{P}_c(\mathcal{X}) \exists$ probability γ_{ζ} s.t.

$$L_{n-1}(x_2^n,\ldots,x_n^n) \xrightarrow{*} \zeta \implies \mu_{n,0}(\cdot | x_2^n,\ldots,x_n^n) \rightarrow \gamma_{\zeta}.$$

Initial Gibbsianness in level-2

With $F: \mathcal{P}_{c}(\mathcal{X}) \rightarrow [0,\infty)$ and

$$\mu_{n,0} \propto e^{-nF \circ L_n(x)} d\lambda^n(x)$$

We obtain an analogues statement for sequentially Gibbs.

Theorem

If F is "C¹" then $(\mu_{n,0})_{n\in\mathbb{N}}$ is sequentially Gibbs with

$$\gamma_{\zeta} \propto e^{-\delta V(\zeta,\delta_{x_1})} d\lambda(x_1).$$

 $\delta V(\zeta, \delta_x)$ sort of directional derivative of V at ζ in the direction of δ_x .

Unique minimiser implies Gibbs

 $P: \mathcal{X} \times \mathcal{B}(\mathcal{Y}) \rightarrow [0, 1]$ transformation kernel from \mathcal{X} to \mathcal{Y} , $\mu_{n,t} = \mu_{n,0}P^n$, transformed measure with independent transformations. X_1, X_2, \ldots : initial coordinates Y_1, Y_2, \ldots : final/evolved coordinates

Theorem

Suppose that for all $\zeta \in \mathcal{P}_{c}(\mathcal{Y})$ there exists a rate function I_{ζ} such that for all $\zeta_{n} \xrightarrow{*} \zeta$ we have the large deviation principle

$$\mathbb{P}(L_n(X_1,\ldots,X_n)\approx\xi\mid L_n(Y_1,\ldots,Y_n)=\zeta_n)\approx e^{-nl_{\zeta}(\xi)}.$$

Then (a) implies (b):

(a) *l_ζ* has a unique global minimiser for all *ζ* ∈ *P_c*(*Y*).
(b) (μ_{n,t})_{n∈ℕ} is sequentially Gibbs.

Such LDP exists in case ${\mathcal X}$ and ${\mathcal Y}$ are finite.