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Weakly interacting particle systems – Gibbs measure

� X a finite set

� N particles on X distributed according to a Gibbs measure π ∈ P(XN )

x ∈ XN : π(x) :=
1

ZN
exp

(
−UN (x)

)
� Hamiltonian UN : XN → R of mean-field type: ∃U : P(X )→ R

UN (x) = NU
(
LN (x)

)
with LN (x) :=

1

N

N∑
i=1

δxi

� Example

UN (x) =
N∑
i=1

V (xi) +
1

N

N∑
i,j=1

W (xi, xj)

In terms of U

U(µ) =
∑
x∈X

µxKx(µ) with Kx(µ) = V (x) +
∑
y∈X

W (x, y)µy
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Weakly interacting particle systems – Dynamics

Introduce a reversible dynamic wrt. Gibbs distribution π

� Single particle jumps

xi;y := x− (xi − y)ei = (x1, . . . , xi−1, y, xi+1, . . . , xN ).

� On the level of empirical distributions

if LN (x) = ν ∈ PN (X ) then LN (xi;y) = νN ;xi,y := ν − 1

N
(δxi − δy)

� Make dynamic reversible wrt. π

QN (x,xi;y) =

√
πxi;y

πx
ANxi,y(LN (x)s) = QN (LN (x);xi, y)

and
{
ANx,y(µ)

}
µ∈P(X )

a family of irreducible symmetric matrices.

� Generator

LNf :=
N∑
i=1

∑
y∈X

(f(xi;y)− f(x))QN
x,xi;y .
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Weakly interacting particle systems – Gradient flow structure

� Free energy for µN ∈ P(XN )

FN (µ) := HN (µ | π) =
∑
x∈XN

µx log
µx
πx

.

� Action of µ ∈ P(XN ) and ψ ∈ RX
N

AN (µ,ψ) =
1

2

∑
x,y

(ψy −ψx)2wN
x,y(µ) = 〈ψ,KN (µ)ψ〉

with weights wN
x,y(µ) defined with Λ(a, b) = (a− b)/(log a− log b) as follows

wN
x,y(µ) := Λ

(
µxQ

N (x,y),µyQ
N (y,x)

)
= Λ

(
µx
πx
,
µy
πy

)
QN (x,y)πx.

� Metric WN on P(XN )

WN (µ,ν)2 := inf
(c,ψ)

∫ 1

0

AN (c(t),ψ(t)) dt

with the infimum among pairs such that c(0) = µ, c(1) = ν and

ċx(t) +
∑
y

(ψy(t)−ψx(t))wN
x,y(c(t)) = 0 ⇔ ċ(t) = KN (c(t))ψ.

André Schlichting • Discrete gradient flow structures for mean-field systems • March 10, 2016 • Page 4 (17)



Weakly interacting particle systems – Gradient flow structure

� Free energy for µN ∈ P(XN )

FN (µ) := HN (µ | π) =
∑
x∈XN

µx log
µx
πx

.

� Action of µ ∈ P(XN ) and ψ ∈ RX
N

AN (µ,ψ) =
1

2

∑
x,y

(ψy −ψx)2wN
x,y(µ) = 〈ψ,KN (µ)ψ〉

with weights wN
x,y(µ) defined with Λ(a, b) = (a− b)/(log a− log b) as follows

wN
x,y(µ) := Λ

(
µxQ

N (x,y),µyQ
N (y,x)

)
= Λ

(
µx
πx
,
µy
πy

)
QN (x,y)πx.

� Metric WN on P(XN )

WN (µ,ν)2 := inf
(c,ψ)

∫ 1

0

AN (c(t),ψ(t)) dt

with the infimum among pairs such that c(0) = µ, c(1) = ν and
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� Metric WN on P(XN )

WN (µ,ν)2 := inf
(c,ψ)

∫ 1

0

AN (c(t),ψ(t)) dt

� N -particle Fisher information

IN (µ) :=
1

2

∑
(x,y)∈Eµ

wN
x,y(µ)

(
log(µxQ

N (x,y))− log(µyQ
N (y,x))

)2
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Weakly interacting particle systems – de Giorgi formulation

The evolution of the density c ∈ P(XN ) satisfies

ċx(t) =
∑
y

(cy(t)Qy,x − cx(t)Qx,y) = (c(t)Q)x = −
(
KN (c(t))DFN (c(t))

)
x
.

The results of [Maas / Mielke, 2011] show that c is the gradient flow of FN wrt. WN .

Proposition (Curves of maximal slope)

For c ∈ AC
(
[0, T ], (P(XN ),WN )

)
the function JN given by

JN (c) := FN (c(T ))−FN (c(0)) +
1

2

∫ T

0

IN (c(t)) dt+
1

2

∫ T

0

AN (c(t),ψ(t)) dt,

is non-negative, where ψt is such that the continuity equation holds. Moreover, a
curve c is a solution to ċ(t) = c(t)QN if and only if JN (c) = 0.
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A class of nonlinear ODEs

� Gibbs measures {π(µ) ∈ P(X )}µ∈P(X )

πx(µ) =
1

Z(µ)
exp(−Hx(µ)), with Hx(µ) =

∂

∂µx
U(µ), and U(µ) =

∑
x∈X

µxKx(µ).

� Q(µ) reversible rates wrt. π(µ)

Qxy(µ) =

√
πy(µ)

πx(µ)
Axy(µ) with A(µ) ∈ RX×X irreducible and symmetric.

� nonlinear ODE for c ∈ C1([0, T ],P(X ))

ċx(t) =
∑
y 6=x

(
cy(t)Qyx(c(t))− cx(t)Qxy(c(t))

)
=
(
c(t)Q(c(t))

)
x

� Stationary states π∗ are fixed points of

µ 7→ π(µ) : π(π∗) = π∗.

Not necessarily unique!
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A class of nonlinear ODEs – Gradient flow

Free energy F : P(X )→ R

F(µ) =
∑
x∈X

µx logµx + U(µ).

Note: F(µ) 6= H(µ | π(µ)). However ∂µxF(µ) = log µx
πx(µ)

+ 1− logZ(µ).

Onsager operator K : RX → RX defined for ψ ∈ RX by

(K(µ)ψ)x =
∑
y

wxy(µ)(ψx − ψy) with wxy(µ) := Λ(µxQxy(µ), µyQyx(µ))

Formal gradient flow

ċ(t) = −K(c(t))DF(c(t)).

Dissipation:

d

dt
F(c(t)) = −I(c(t)) = −1

2

∑
x,y

wxy(c) (log(cxQxy(c))− log(cyQyx(c)))2 .
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A class of nonlinear ODEs – de Giorgi formulation

Proposition (Metric)

The space (P(X ),W) with the metric defined by

µ, ν ∈ P(X ) : W2(µ, ν) := inf
(c,ψ)

{∫ 1

0

A(c(t), ψ(t)) dt

}
,

where for ψ ∈ RX

A(c, ψ) := 〈ψ,K(c)ψ〉X =
1

2

∑
x,y

wxy(c) (ψx − ψy)2

and (c, ψ) solves

ċ(t) = K(c(t))ψ(t) with c(0) = µ and c(1) = ν,

is a complete separable metric space.
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is a complete separable metric space.

Proposition (Curves of maximal slope)

For any (c(t))t∈[0,T ] ∈ AC ([0, T ], (P(X ),W)) holds

J (c) := F(c(T ))−F(c(0)) +
1

2

∫ T

0

I(c(t)) dt+
1

2

∫ T

0

A(c(t), ψ(t)) dt ≥ 0

Moreover, J (c) = 0 if and only if ċ = cQ(c). In this case c(t) ∈ P∗(X ) for all t > 0.
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A class of nonlinear ODEs – Liouville equation

� Since LN] µ
N ∈ P(PN (X )), a lifting of the die ODE from P(X ) to P(P(X )) is

necessary to make it compatible
� For randomized initial data law c(0) = C(0) ∈ P(P(X )) holds

∂tC(t, c) + divP(X ) (C(t, c) cQ(c)) = 0. (Lio)

� free energy F, action A, Fisher information I are defined as averages of their
unlifted counterparts:

F(C) :=

∫
F(ν) C(dν).

� Consistency of definition of metric

W(M,N) := inf
(C,	)

∫ 1

0

A (C(t),	(t)) dt
!
= W 2

W(M,N) := inf
�

∫
W2(µ, ν)�(dµ, dν).

� De Giorgi functional J : AC ([0, T ], (P(P(X )),W))→ [0,∞]

J(C) = F(C(T ))− F(C(0)) +
1

2

∫ T

0

I(C(t)) dt+
1

2

∫ T

0

A(C(t),	(t)) dt ≥ 0

and J(C) = 0 if and only if C solves (Lio).
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Passage to the limit – Overview and Strategy

Master equation XN
t Markov (LN ,XN ) c ∈ AC

(
[0, t], (P(XN ),WN )

)
ċ(t) = −KN (c(t))DHN (c(t) | π)

de Giorgi⇐⇒ JN (c) = 0

⇓ LN] ⇓ LN]

CN Markov (L̄N ,PN (X )) CN ∈ AC
(
[0, T ], (P(PN (X )),WN )

)
⇓ N →∞ ⇓ N →∞

Liouville equation for ODE on P(X ) C ∈ AC ([0, T ], (P(P(X )),W))

∂tC(t, ν) = divP(X ) (C(t, ν)KDF)
de Giorgi⇐⇒ J(C) = 0

Strategy

Proof Γ-lim inf estimate for JN wrt. J, whenever LN] c
d→ C on [0, T ]

lim inf
N→∞

JN (c) ≥ J(C).
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Passage to the limit – Abstract theorem

Theorem (Sandier-Serfaty)

Assume that whenever a sequence cN ∈ AC
(
[0, T ], (P(XN ),WN )

)
for t ∈ [0, T ] it

holds LN] c
N (t)

d→ C(t) ∈ P(P(X )) and

lim inf
N→∞

1

N
FN (cN (T )) ≥ F(C(T ))−F0 with F0 ∈ R. (A0)

In addition, assume it holds

lim inf
N→∞

1

N

∫ T

0

AN (cN (t),ψN (t)) dt ≥
∫ T

0

A(C(t),	(t)) dt, (A1)

where (cN ,ψN ) and (C(t),	(t)) are solutions of certain continuity equations.

lim inf
N→∞

1

N
IN (cN (t)) ≥ I(C(t)). (A2)

Then, whenever JN (cN ) = 0 and cN (0)
τ→ C(0) such that

limN→∞FN (cN (0)) = F(C(0))−F0, it holds J(C) = 0 and

∀t ∈ [0, T ) : lim
N→∞

1

N
FN (cN (t)) = F(C(t))−F0.
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Passage to the limit – Verification of assumptions I

Proposition (lim inf-estimate for free energy)

If LN] µ
N d→ M, then

lim
N→∞

1

N
H(µN | π) ≥

∫
P(X )

(F(ν)−F0) M(dν) = F(M)−F0, (A0)
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If LN] µ
N d→ M, then

lim
N→∞

1

N
H(µN | π) ≥

∫
P(X )

(F(ν)−F0) M(dν) = F(M)−F0, (A0)

Proof: Decompose relative entropy

1

N
H
(
µN | πN

)
=

1

N
H(µN ) + ELN

#
µN [U ] +

1

N
logZN

Decompose entropy by using TN (ν) =
{
x ∈ XN : LN (x) = ν

}
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H
(
µN | πN

)
=

1

N
H(µN ) + ELN

#
µN [U ] +

1

N
logZN

Decompose entropy by using TN (ν) =
{
x ∈ XN : LN (x) = ν

}
1

N
H(µN ) =

1

N
ELN

#
µN (dν)

[
H
(
µN (• | LN = ν)

∣∣∣ 1/|TN (ν)|
)]

+
1

N
HN

(
LN#µ

N
∣∣∣ 1/ |PN (X )|

)
− 1

N
log |PN (X )|

− 1

N
ELN

#
µN [log |TN (ν)|]
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1

N
H(µN ) ≥ − 1

N
log |PN (X )| − 1

N
ELN

#
µN [log |TN |]

Stirling ≥ −d logN

N
+ ELN

#
µN

[
HP(X )(•)

]
− log(N + 1)

N
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µN [log |TN |]

Stirling ≥ −d logN

N
+ ELN

#
µN

[
HP(X )(•)

]
− log(N + 1)

N

By Sanov’s Theorem:
lim
N→∞

1

N
logZN = − inf

ν∈P(X )

{∑
x∈X

ν(x) log ν(x) + U(ν)

}
=: −F0.
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Passage to the limit – Sketch of the proofs II

Proposition (Convergence of metric derivative and slopes)

Let cN ∈ AC([0, T ],
(
P(XN ),WN

)
) with (cN ,ψN ) solving the continuity equation.

If
LN] c

N d→ C for some measurable C : [0, T ]→ P(P(X )),

such that

lim sup
N→∞

∫ T

0

1

N
AN (cN (t),ψN (t))dt <∞.

Then C ∈ AC ([0, T ],P(P(X ))), and it exists 	 : [0, T ]× P(X )→ RX , for which
(C,	) solves the continuity equation and it holds

lim inf
N→∞

∫ T

0

1

N
AN (cN (t),ψN (t))dt ≥

∫ T

0

A(C(t),	(t)) dt (A1)

and

lim inf
N→∞

∫ T

0

1

N
IN

(
cN (t)

)
dt ≥

∫ T

0

I (C(t)) dt. (A2)
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Passage to the limit – Result

Previous results + tightness for particle system imply:

Theorem (Convergence of the particle system to the mean field equation)

Let cN be the law of the N -particle system. Moreover assume its initial distribution to
be well prepared

1

N
FN (cN (0))→ F(C(0))−F0 with LN] cN (0)

d→ C(0) as N →∞.

Then it holds
LN] cN (t)

d→ C(t) for all t ∈ (0,∞) ,

with C a weak solution to (Lio) and moreover

1

N
FN (cN (t))→ F(C(t))−F0 for all t ∈ (0,∞).

Similar results in this spirit:
[Fathi, Simon 2015] Hydrodynamic limit for simple exclusion process
[Mielke 2014] On evolutionary Gamma convergence for gradient systems
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κ-convexity – Motivation

Definition (κ-convexity wrt.W){
Q(µ) ∈ RX×X

}
µ∈P(X )

is κ-convex with κ ∈ R, if for any constant speed geodesic
c ∈ AC ([0, 1], (P(X ),W)) holds

F(c(t)) ≤ (1− t)F(c(0)) + tF(c(t))− κt(1− t)
2
W2(c(0), c(1)).

Corollary (Two-point space)

Assume X = {0, 1}, p(µ) := Q(µ; 0, 1) and q(µ) := Q(µ; 1, 0) as well as
p′(µ) = ∂µ0p(µ) and q′(µ) = ∂µ1q(µ) then the κ is give by

κ = inf
µ∈P(X )

(
p(µ) + q(µ)

2
+ 3

(
µ(0)p′(µ) + µ(1)q′(µ)

)
+ Λ (µ0p(µ), µ1q(µ))

(
1

2µ(0)p(µ)
+

1

2µ(1)q(µ)
− p′(µ)

p(µ)
− q′(µ)

q(µ)

))
.

For p′ = q′ = 0, formula reduces to the one obtained by [Maas, 2011].
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κ-convexity – Curie-Weiss model

Mean-field Ising model on X = {0, 1}. Define potentials by
V (0) = V (1) = W (0, 0) = W (1, 1) = 0 and W (0, 1) = W (1, 0) = β > 0. Hence
K0(µ) = βµ1, K1(µ) = βµ0 and so

F(µ) =
∑

σ∈{0,1}

(logµσ +Kσ(µ))µσ = µ0 logµ0 + µ1 logµ1 + 2βµ0µ1.

As a function F : P(X )→ R is convex for β ≤ 1.

Does the same holds for κ-convexity wrt.W?

For the dynamic use for instance Metropolis rates:

pMC(µ) = exp (−2β(µ(0)− µ(1))+) qMC(µ) = exp (−2β(µ(1)− µ(0))+)

is κ-convex wrt.W with
κMC(β) ≤ 2− 2β.
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Questions and open problems

κ-convexity.

� Proof lower bound in κMC(β) = 2− 2β

� Connect κN -convexity of N -particle system with κ-convexity of limit system:
Easy:

lim
N→∞

κN ≤ κ

Hard: Quantified comparison

κ = κN + oN (1).

Passage to the Limit.

� Second order approximation of the N -particle system
⇒ Fokker-Planck equation

� Quantify the rate of convergence in N

� Apply to stronger interacting particle systems, like Kac-Ising models
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