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Currents: hallmarks of nonequilibrium behavior

    Fundamental observable:          
Current Large Deviation Function (LDF) 
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CURRENTS OUT OF EQUILIBRIUM

Currents: hallmarks of nonequilibrium behavior

Despite some exact results (e.g. fluctuation theorems), the overall picture 
remains puzzling	


Two new powerfull tools: 	

Macroscopic Fluctuation Theory (MFT)	

 Advanced simulations of rare events

    Fundamental observable:          
Current Large Deviation Function (LDF) 

Current statistics: main objective of nonequilibrium statistical physics

... and an ideal laboratory:	

Stochastic lattice gases
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KMP: Diffusive energy transport model	
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rWASEP: Diffusive particle transport under external field	


Occupation numbers ni=0,1 + jumps with rates	


!

1D, 2D, reservoirs, periodic boundaries, ...
D(⇢) = 1/2 ; �(⇢) = ⇢(1� ⇢)

ZRP:  Interacting particles diffusing in a lattice	


Jump rates depend on local occupation, v(ni)	


Product invariant measure! 
D(⇢) = �0(⇢)/2 ; �(⇢) = �(⇢)



SIMULATING  RARE  EVENTS
LDFs are very hard to compute: exponentially-unlikely rare events 	


Way around: modify dynamics so rare events are no longer rare.
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For long times,

Monte Carlo scheme: Evolve many copies of the system with dynamics U’C’ C and 
clone/kill them with rates YC.
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 Density and current fields coupled via continuity equation: 	
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 Complex spatiotemporal variational problem: 
challenging solution

Optimal path≠steady profile: Typical path 
to sustain a given current fluctuation J
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ONE DIMENSION (1D)



 The additivity principle (AP) allows to compute explicitly the current distribution in 
many 1D nonequilibrium systems	

!

 Original formulation of AP by iteratively slicing a 1D system
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Within MFT, the AP amounts to assume time-independent optimal profiles

⇢J(x)

jJ(x)
@
t

⇢
J

+@
x

j
J

=0���������! jJ(x) = J} ) G(J) = �min
⇢(x)

Z 1

0
dx

[J +D(⇢)⇢0(x)]
2

2�(⇢)

D(⇢)2⇢0(x)2 = J

2
⇥
1 + 2�(⇢)K(J2)

⇤
⇢(x = 0, 1) = ⇢L,R



 The additivity principle (AP) allows to compute explicitly the current distribution in 
many 1D nonequilibrium systems	

!

 Original formulation of AP by iteratively slicing a 1D system

THE  ADDITIVITY  PRINCIPLE
T. Bodineau & B. Derrida, PRL 92, 180601 (2004)

P

(L)
⌧ (J ; ⇢L, ⇢R) = max

⇢
[P

(L�`)
⌧ (J ; ⇢L, ⇢)⇥ P

(`)
⌧ (J ; ⇢, ⇢R)]

ρL ρR
ρ J

ℓ
L

 Differential equation for the optimal profile

Within MFT, the AP amounts to assume time-independent optimal profiles

⇢J(x)

jJ(x)
@
t

⇢
J

+@
x

j
J

=0���������! jJ(x) = J} ) G(J) = �min
⇢(x)

Z 1

0
dx

[J +D(⇢)⇢0(x)]
2

2�(⇢)

D(⇢)2⇢0(x)2 = J

2
⇥
1 + 2�(⇢)K(J2)

⇤
⇢(x = 0, 1) = ⇢L,R

 Physical picture: after a short (microscopic) transient, the system settles into a 
time-independent state with structured density field (typically different from the 
stationary one) such that the empirical, space- and time-averaged current equals J



TESTING  THE  ADDITIVITY  PRINCIPLE  IN  1D
P.I. Hurtado & P.L. Garrido, PRL 102, 250601 (2009)

 Measure current fluctuations in 1D open KMP model	


!
 Legendre transform of the current LDF: µ(�) = max

J
[G(J) + �J ]
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 Measure current fluctuations in 1D open KMP model	


!
 Legendre transform of the current LDF: µ(�) = max

J
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No violation of additivity principle has been reported to date in open 1D 
nonequilibrium diffusive systems.



MFT + Additivity Principle = powerful tool to compute 1D current LDFs	


However, MFT allows for dynamic solutions in general: 	


What is their meaning? 	


Do they appear? Can we observe them? 	


DYNAMIC PHASE TRANSITIONS IN FLUCTUATIONS
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MFT + Additivity Principle = powerful tool to compute 1D current LDFs	


However, MFT allows for dynamic solutions in general: 	


What is their meaning? 	


Do they appear? Can we observe them? 	


Bodineau & Derrida, PRE 72, 066110 (2005)

YES!! Additivity scenario eventually breaks down for large fluctuations via a      

dynamic phase transition at the fluctuating level involving a symmetry breaking	


 Optimal path is a localized traveling wave. Observed only for periodic systems!	


Lesson: rare events are generically associated with coherent, self-organized patterns 

which enhance their probability
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|J| < Jc : sum of weakly-correlated events        Gaussian statistics 	


|J| > Jc : coherent traveling wave + energy localization        non-Gaussian statistics	


Striking phenomenon: Isolated equilibrium system with no external fields	


Spontaneous symmetry breaking in 1d: translation invariance 	


Symmetry-breaking instabilities forbidden in equilibrium may happen in fluctuations

SPONTANEOUS SYMMETRY BREAKING IN FLUCTUATIONS
P.I. Hurtado&Garrido, PRL 107, 180601 (2011)



Excellent comparison of data with MFT 
predictions as N↑ 	


|J| > Jc = π: non-quadratic G(q) and μ(λ) 
→ Non-Gaussian statistics	


Clear signature of phase transition in 
configurations (λ>λc= π): energy 
localization + traveling wave

SPONTANEOUS SYMMETRY BREAKING IN FLUCTUATIONS
µ(�) = max

J
[G(J) + �J ]

P.I. Hurtado&Garrido, PRL 107, 180601 (2011)



Main differences with KMP: critical field |Ec|	


Emergence of a macroscopic jammed state which hinders transport of particles to 
facilitate current fluctuations well below the average 
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WASEP: SSB IN FLUCTUATIONS, BUT DIFFERENT…



D-DIMENSIONS (D>1)

⇢L ⇢R



A WEAK ADDITIVITY PRINCIPLE (WAP) IN D>1
 Empirical current:	


!
!
!
!  Probability of a current fluctuation:

(no external field E for simplicity)

J =
1
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0
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⇤
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C.P. E., Garrido & Hurtado, preprint (2015)

Geometry:	

 Gradient along x-direction	

 Periodic along all other, 

(d-1) directions
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 Additivity: assume dominant paths to be time-independent

 The relevant current fields are divergence-free but possibly structured
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 Empirical current:	
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 Additivity: assume dominant paths to be time-independent

 The relevant current fields are divergence-free but possibly structured

⇢(r)

j(r)
@t⇢+r·j=0�������! r · j(r) = 0}

}
 Periodicity suggests relevant fields exhibit structure only along gradient, x-direction
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 Current LDF under wAP:

... + constraints:	

 Boundary conditions	

 Empirical ⟂ current:

J? =
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0
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A WEAK ADDITIVITY PRINCIPLE (WAP) IN D>1

 Introduce (d-1) Lagrange multipliers

L(�?)
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 Differential equation for the optimal density profile ⇢J(x)
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 Optimal current field and Lagrange multipliers:

 jJ(x) structured along gradient direction in all orthogonal components, and 
locally coupled to ρJ(x) via the mobility σ(ρ)
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WEAK  VS  STRONG  ADDITIVITY
 Strong Additivity Principle (sAP): straightforward extension of the 1d-AP to high-d
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 Which conjecture (weak AP vs strong AP) yields a better maximizer of the 
current MFT action?

⇢

(s)
J (x) 6= ⇢

(w)
J (x)

In general
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 Intuition suggests that the wAP should offer a better solution as it includes 
additional degrees of freedom that the system at hand can put at work to improve 
its large deviation function
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WEAK  VS  STRONG  ADDITIVITY
 Define functional                                             , with              such that
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 This result singles out the weak Additivity Principle as the relevant simplifying 
hypothesis to study current statistics in general d-dimensional driven diffusive 
systems	

!
 Interestingly, both the sAP and wAP yield the same result only for constant 

mobility, or for current fluctuations parallel to the gradient direction:	

!
!

 	

This observation helps in making sense of previous, seemingly contradictory results  
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ZRP: WEAK ADDITIVITY  VS  EXACT RESULTS

D↵(⇢) =
h↵

(1 + ⇢)2
�↵(⇢) = 2h↵

⇢

1 + ⇢
 2d ZRP with constant jump rates hα: 	


!
 Quantum Hamiltonian formalism + factorization property ⇒ exact results, L=105

⇢L = 1
⇢R = 0.1

Villavicencio-Sánchez & Harris, arXiv:1508.07945 (2015)
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!
 Quantum Hamiltonian formalism + factorization property ⇒ exact results, L=105

 The agreement between wAP predictions and exact matrix computations for 
L=105 is excellent, while sAP predictions fail outside the gradient direction, the 
discrepancy being maximal for orthogonal fluctuations and increasing with J

⇢L = 1
⇢R = 0.1
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KMP: WEAK ADDITIVITY  VS  SIMULATIONS

 More complex 2d-KMP model of heat transport
TL = 2
TR = 1

D(⇢) = 1/2 ; �(⇢) = ⇢2
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 More complex 2d-KMP model of heat transport

µ(˜z) = max

J
[G(J) + ˜z · J]
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KMP: WEAK ADDITIVITY  VS  SIMULATIONS

 More complex 2d-KMP model of heat transport

 Double-bump structure in μ(z) vs ɸ as predicted by wAP. Moreover, finite-size 
data clearly converge to the wAP prediction as L increases

µ(˜z) = max

J
[G(J) + ˜z · J]

z ⌘ z̃+ ✏
✏ = T�1

R � T�1
L

TL = 2
TR = 1

D(⇢) = 1/2 ; �(⇢) = ⇢2
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 Excellent comparison of wAP predictions against numerical data in other cases:	

!

 Isotropic 2d Random Walkers (RW) under density gradient	

!
 Anisotropic 2d Zero Range Process	

!
 Etc.

OTHER MODELS

C.P. E., Garrido & Hurtado, preprint (2015)



The Additivity Principle (AP) of Bodineau & Derrida is a powerful tool to 
compute current LDFs within Macroscopic Fluctuation Theory (MFT)	


We have extended the Additivity Principle to general, d-dimensional 
nonequilibrium driven diffusive systems	


Crucially, the existence of a divergence-free, structured current vector field at 
the fluctuating level, coupled to the local mobility, turns out to be essential to 
understand current statistics in d>1	


wAP predictions have been tested against both exact matrix results and 
simulations of rare events in different paradigmatic models of transport in d=2, 
and a remarkable agreement is found in all cases.	


We prove that, when compared to the straightforward extension of the AP to 
high-d (sAP), the so-called weak AP (wAP) always yields a better maximizer of 
the macroscopic fluctuation theory action for current statistic

SUMMARY



Thank you
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DYNAMIC PHASE TRANSITION 
IN D-DIMENSIONS ?



DYNAMIC PHASE TRANSITION IN 2D
Questions: Dynamic phase transitions in high-d? Traveling 
wave structure? Other symmetry-breaking solutions? ...	


!
DPT in 2d: way more complex!! PDE, multiple solutions, ...

Tizón, Espigares, Garrido & Hurtado, preprint 
(2015)
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Extensive simulations of current statistics in 2d WASEP: 
SSB at the fluctuating level in 2d!!
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Essential role of large-scale simulations to ellucidate the nature 
of this phenomenon in more complex situations

World record!?? 5x105 
clones evolving in parallel



DYNAMIC PHASE TRANSITION IN 2D
The phase transition is most evident at the configurational 
level, but ... what types of structures appear beyond the 
critical current?
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(2015)
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Measure the dispersion of the instantaneous center of mass position for different 
slices of the system in the x- and y-directions
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DYNAMIC PHASE TRANSITION IN 2D: MFT PREDICTIONS

General stability analysis in 2d shows that flat (homogeneous) solution becomes 
unstable against small space-time perturbations whenever	

!
!
!
!
The first instability to kick in has the form of a 1d-type traveling wave	

!
The variational problems looks ugly but can be solved (numerically) for the 1d-
projection case

Tizón, Espigares, Garrido & Hurtado, preprint 
(2015)

Violations of additivity happen in d-dimensional periodic systems via a dynamic phase 
transition to a traveling-wave phase with broken symmetries, for which divergence-free 
but structured current fields also play a key role.
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!
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The variational problems looks ugly but can be solved (numerically) for the 1d-
projection case
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Crucial role of divergence-free but structured field φ(r)

Violations of additivity happen in d-dimensional periodic systems via a dynamic phase 
transition to a traveling-wave phase with broken symmetries, for which divergence-free 
but structured current fields also play a key role.



THE ISOMETRIC FLUCTUATION RELATION
Within MFT + sAP, invariance of optimal paths leads to Isometric Fluctuation 
Relation (IFR)

Hurtado, C. Espigares, Pozo, Garrido, PNAS 108, 7704 (2011)



THE ISOMETRIC FLUCTUATION RELATION
Within MFT + sAP, invariance of optimal paths leads to Isometric Fluctuation 
Relation (IFR)

Hurtado, C. Espigares, Pozo, Garrido, PNAS 108, 7704 (2011)

Tested in simulations of rare events for different stochastic lattice gases, exact matrix 
computations and even experiments. Generalized to anisotropic systems and 
various equilibrium systems with broken symmetries	

!
Small deviations from IFR observed for large current fluctuations are related to the 
presence of the structured, divergence-free optimal current vector field. However, 
generalized IFR

P.H., C. Espigares, Pozo, Garrido, JSP 154, 214 (2014)	

Villavicencio, Harris & Touchette, EPL, 105, 30009 (2014)	

Kumar et al, PRE 91, 030102(2015)	

Lacoste & Gaspard, PRL 113, 240602 (2014)



SYMMETRIES IN NONEQUILIBRIUM FLUCTUATIONS

P.H., Espigares, Pozo, Garrido, PNAS 108, 7704 (2011)

J � = R̂dJ � |J | = |J �|

lim
���

1
�Ld

ln
�

P� (J)
P� (J �)

�
= � · (J � J �)

Time-reversibility sets strong constraints on nonequilibrium current fluctuations



SYMMETRIES IN NONEQUILIBRIUM FLUCTUATIONS

P.H., Espigares, Pozo, Garrido, PNAS 108, 7704 (2011)

J � = R̂dJ � |J | = |J �|

lim
���

1
�Ld

ln
�

P� (J)
P� (J �)

�
= � · (J � J �)

Time-reversibility sets strong constraints on nonequilibrium current fluctuations

Hierarchy of equations for the cumulants of the current distribution, coupled 
via the generators L of d-dimensional rotations	


!
!
!
Example in d=2 (def.                        )

Further consequences: Green-Kubo integrals, hierarchy for nonlinear response 
coefficients, etc

Test the IFT!! ... Simulation of rare events



IFT is numerically confirmed with 
high precission	


Optimal profiles remain invariant 
under current rotations	


Also confirmed for hard-disks:        
IFT valid for hydrodynamic systems

   

lim
���

1
�Ld

ln
�

P� (J)
P� (J �)

�
= � · (J � J �)

SYMMETRY IN FLUCTUATIONS: TESTING THE IFT



WHAT ARE LARGE DEVIATION FUNCTIONS?
Examples	

!

 Density distribution in large subsystem	

!
!
 Time-integrated current for long times	


!
!
 LDFs have a typical shape

P(n/v = �) � evI(�)

P (Qt/t = q) � etF(q)



WHAT ARE LARGE DEVIATION FUNCTIONS?
Examples	

!

 Density distribution in large subsystem	

!
!
 Time-integrated current for long times	


!
!
 LDFs have a typical shape

P(n/v = �) � evI(�)

P (Qt/t = q) � etF(q)

Why LDFs are important?	

 	


Rate of convergence toward average	

!

Equilibrium: LDFs = entropy/free energy	

!

!
!

Nonequilibrium: LDFs extend the notion of 
free energy out of equilibrium

P [�(�x)] � exp
�
� LdI[�(�x)]

�

I[�(�x)] =
1

kBT

�
d�x

�
f [�(�x)]� f(��)

�



  Fluctuations of space&time-averaged current	

!
!
!

 Optimal profiles≠steady profiles: Typical path to 	

sustain a given fluctuation	


!
 Additivity principle (Bodineau&Derrida, PRL 2004): 	

time-independent optimal profiles

MACROSCOPIC  FLUCTUATION  THEORY (II)

q =
1
�

� �

0
dt

� 1

0
dx j(x, t)

�q(x, t) = �q(x) ; jq(x, t) = q

G(q) = �min
�(x)

� 1

0
dx

�
q + D[�]�x�

�2

2�[�]

I� [�, j] = �
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0
dt

� 1

0
dx

(j + D[�]�x�)2

2�[�]
G(q) =

1
�

max
{�,j}�

0

I� [�, j]



  Fluctuations of space&time-averaged current	

!
!
!

 Optimal profiles≠steady profiles: Typical path to 	

sustain a given fluctuation	


!
 Additivity principle (Bodineau&Derrida, PRL 2004): 	

time-independent optimal profiles

MACROSCOPIC  FLUCTUATION  THEORY (II)

q =
1
�

� �

0
dt

� 1

0
dx j(x, t)

�q(x, t) = �q(x) ; jq(x, t) = q

G(q) = �min
�(x)

� 1

0
dx

�
q + D[�]�x�

�2

2�[�]
 For isolated systems, flat profiles are always solution ... 	

!
 Is this the whole story? ... NO!!	

!
 Additivity scenario eventually breaks down for large fluctuations (|q| > qc): 

spontaneous symmetry breaking at the fluctuation level	

!
!

Gaussian statistics!

I� [�, j] = �
� �

0
dt

� 1

0
dx

(j + D[�]�x�)2

2�[�]
G(q) =

1
�

max
{�,j}�

0

I� [�, j]



 Local stability of flat profiles against small perturbation	

!
!
 For |q|>qc → traveling wave:	


PHASE  TRANSITION  IN  MFT

Instability

Bodineau&Derrida, PRE 2005



 Local stability of flat profiles against small perturbation	

!
!
 For |q|>qc → traveling wave:	


PHASE  TRANSITION  IN  MFT

 Equation for optimal wave profile	

!

!
ωq(x) symmetric with single minimum ω1=ω(x1) and maximum ω2=ω(x2) such 
that |x2-x1|=1/2	

!
 These constraints fix constants C1 and C2:	

!
!
!
 Optimal wave velocity: 

Instability

Bodineau&Derrida, PRE 2005



Average wave velocity as a function of λ and different sizes N	


Agreement with MFT very good for large enough N	


For |q| < qc            v=2q. However, above qc the relation becomes nonlinear

TRAVELING  WAVE  VELOCITY




