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CURRENTS OUT OF EQUILIBRIUM

¢ Currents: hallmarks of nonequilibrium behavior —

o Current statistics: main objective of nonequilibrium statistical physics

Fundamental observable:
Current Large Deviation Function (LDF)



CURRENTS OUT OF EQUILIBRIUM

¢ Currents: hallmarks of nonequilibrium behavior —

o Current statistics: main objective of nonequilibrium statistical physics

Fundamental observable:
Current Large Deviation Function (LDF)
e Despite some exact results (e.g. fluctuation theorems), the overall picture
remains puzzling

¢ Two new powerfull tools: ...and an ideal laboratory:
@ Macroscopic Fluctuation Theory (MFT) @ Stochastic lattice gases

& Advanced simulations of rare events
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o WASEP: Diffusive particle transport under external field —

o Occupation numbers ni=0,| + jumps with rates

1
=g exp(£FE/N)

o | D, 2D, reservoirs, periodic boundaries, ...
D(p)=1/2 ; oa(p)=p(l—p) =




STOCHASTIC LATTICE GASES

(Pz', Pz‘+1) — (P{L‘a P;+1)
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ottt pi = p(pi + pit1) piv1 = (L =p)(pi + pi+1)
""""" \—/ o KMP: Diffusive energy transport model
bttt e Local energies pi=0

"-}'-}‘—} = — ﬂhﬁl o pe[0,|] random. Energy is locally conserved!

o WASEP: Diffusive particle transport under external field —

o Occupation numbers ni=0,| + jumps with rates

1
=g exp(£FE/N)

o | D, 2D, reservoirs, periodic boundaries, ...

PNy e ZRP: Interacting particles diffusing in a lattice
‘ v(3) v(3)
V(2/ N\ /N :
v(z) . ¢ lump rates depend on local occupation, v(ni
‘ Xu)
v(l) wv(l) V(l) . :
‘ ‘ NS TN O e Product invariant measure!

= === D(p) =~"(p)/2 ; olp)="(p)



Giardina, Kurchan & Peliti, PRL 96, 120603 (2006)

SIMULATING RARE EVENTS  tecomte aTaileur jSTAT Po3004 (2007)

Giardina, Kurchan, Lecomte & Tallleur; ]SP 145, 787 (201 1)
o | DFs are very hard to compute: exponentially-unlikely rare events

¢ Way around: modify dynamics so rare events are no Ionger rare.

P(Qq, ¢ Co) = Z Uc,c, ,--Ucycy 0 Qt_ZQCkHCk

Cht..
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o | DFs are very hard to compute: exponentially-unlikely rare events

¢ Way around: modify dynamics so rare events are no Ionger rare.
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® [For long times,

P(Q;,t) < et (Q/) = TI(A 1) < e | with (X) = max[F(q) + A - q]
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¢ Modified dynamics Uc'c unnormalized. Exit rate Yc=2c Uc ¢

Uéj/c — Y 1UC/C — H(A t Z YCt 1UCtCt 1" 'YCOUéleO
Cy...C1
® Monte Carlo scheme: Evolve many copies of the system with dynamics U’'c ¢ and
clone/kill them with rates Yc.



MACROSCOPIC FLUCTUATION THEORY (MFT)

Bertini, Gabrielli, De Sole, Jona-Lasinio & Landim, 2001-2015
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Bertini, Gabrielli, De Sole, Jona-Lasinio & Landim, 2001-2015
Rev. Mod. Phys. 87,593 (2015)

e Evolution equation for wide class of systems: j(r,t)  fluctuating

O,p(r,t) + V .1 (—f)(p)Vp(I‘,t) +(p)E + S(rat)) =0 re A =0, 1]

e (Gaussian white noise: Accounts for microscopic fluctuations at the macroscale

(§(r,t)) =0 (Ea(r, 1)Es(r' 1)) = L™ %00 (p)dapd(r — r')o(t —t')
a, 3 € |1,d]

e Diffusivity and mobility matrices linked by local Einstein relation: D(p) = f(p)5(p)



MACROSCOPIC FLUCTUATION THEORY (MFT)

Bertini, Gabrielli, De Sole, Jona-Lasinio & Landim, 2001-2015
Rev. Mod. Phys. 87,593 (2015)

e Evolution equation for wide class of systems: j(r,t)  fluctuating

0up(r.t) + V| (~D(p) Vplr.t) + 6(p)E +&(r.1) ) |= 0

recA=/0,1°

® (Gaussian white noise: Accounts for microscopic fluctuations at the macroscale

(&(r,t)) =0 (Ea(r, 1)Es(r' 1)) = L™ %00 (p)dapd(r — r')o(t —t')
a, 3 € |1,d]

e Diffusivity and mobility matrices linked by local Einstein relation: D(p) = f(p)5(p)

¢ Probability of a history {p(r, O} —> P ({p,j}7) ~ etL Il
il =5 [ dt/ dr (=31, (0)) - £(0) (= ()
in(p) = —D(p)Vp+6(p)E Yalp) =0, (p)

® Density and current fields coupled via continuity equation: 9;p(r,t) + V - j(r, )

=0



CURRENT STATISTICS IN MFT

® Space- and time-averaged empirical current |

1 T
J:—/ dt/drj(r,t)
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¢ Probability of a current fluctuation: P (J) ~ o TTLIG()



CURRENT STATISTICS IN MFT

® Space- and time-averaged empirical current |

= %/Tdt/drj(r,t)

¢ Probability of a current fluctuation: P (

—I—’TL G(J)

G<J>——Jﬂﬂo7{f£i{/ dt/ i (=3nlo

jh(P) = D( )Vp+a(p)



CURRENT STATISTICS IN MFT

® Space- and time-averaged empirical current |

1 T
:—/ dt/drj(rt
T Jo

e Probability of a current fluctuation: P ( etTLIG(I)

G(J)=—Tlggo—7®{/ dt/dr 3~y () 5000 G~ iy o) |

ip(p) = ~D(p)Vp+6(p)E

® Optimal path+#steady profile: Typical path .
to sustain a given current fluctuation | 2,5

PJ (I‘,t) j_](I',?f)

Po(X:1JI)

e Complex spatiotemporal variational proble 1.5}
challenging solution
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T. Bodineau & B. Derrida, PRL 92, 180601 (2004) £

¢ [he additivity principle (AP) allows to compute explicitly the current distribution in
many | D nonequilibrium systems

® Original formulation of AP by iteratively slicing a |D system

T

P (5 pr, pr) = max[PY =9 (J; pr, p) x PY(J;p, pr)]
Jo
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¢ Within MFT, the AP amounts to assume time-independent optimal profiles

2
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o Differential equation for the optimal profile

D(p)*p'(x)? = J? |1+ 20(p) K (J*)] ple =0,1) = pr R
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T. Bodineau & B. Derrida, PRL 92, 180601 (2004) £

¢ [he additivity principle (AP) allows to compute explicitly the current distribution in
many | D nonequilibrium systems

® Original formulation of AP by iteratively slicing a |D system

T

P (5 pr, pr) = max[PY =9 (J; pr, p) x PY(J;p, pr)]
Jo

¢ Within MFT, the AP amounts to assume time-independent optimal profiles

2

PI(L)\ 8:ps+02is=0_ . ) — B ' x[J+D(p)ﬂ’(£U)]
jr@)S sta) =7 =6 = —min | a0

o Differential equation for the optimal profile

D(p)*p'(x)? = J? |1+ 20(p) K (J*)] ple =0,1) = pr R

® Physical picture: after a short (microscopic) transient, the system settles into a
time-independent state with structured density field (typically different from the

stationary one) such that the empirical, space- and time-averaged current equals J



TESTING THE ADDITIVITY PRINCIPLE IN D

Pl. Hurtado & PL. Garrido, PRL 102, 250601 (2009)

® Measure current fluctuations in 1D open KMP model (o1, pi1) — (0}, pi11)

&%9‘23}. — — Eﬂ-u p; = p(pi + pit1) Pir1 = (1 =p)(pi + pit1)
e Legendre transform of the current LDF: t(A) = mjlx[G(J) + AJ]
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Pl. Hurtado & PL. Garrido, PRL 102, 250601 (2009)

® Measure current fluctuations in 1D open KMP model  (pi,pi41) — (0}, pj11)
“pukpz}.p;}' — e Eﬂ-lil p; = p(pi + piy1) pi1 = (1 =p)(pi + piy1)

e Legendre transform of the current LDF: t(A) = m?x[G(J) + A\J]|
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® Measure current fluctuations in 1D open KMP model (o1, pi1) — (0}, pi11)

&ﬂ'ﬁ}'@}. — — 3"}“ pi = p(pi + pit1) Pir1 = (1 =p)(pi + pit1)
e Legendre transform of the current LDF: t(A) = m(?x[G(J) + A\J]
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TESTING THE ADDITIVITY PRINCIPLE IN D

Pl. Hurtado & PL. Garrido, PRL 102, 250601 (2009)

® Measure current fluctuations in 1D open KMP model (o1, pi1) — (0}, pi11)

H‘EJ-E}—EP-}... * o 0 E_N_‘—u pfizp(pz‘+p¢+1) pg+1:(1—p)(pi+pi+1)
e Legendre transform of the current LDF: t(A) = m(?x[G(J) + AJ]

oo 2\=0.3,-0.8
3 A=0.25, -0.75
o .1 ' I i ! | ! | ! _ | ! | o—o 2=0.2,-0.7
ol - e A—~A )=0.15, -0.65
<< )=01,-0.6
v—v A=0.05, -0.55
p—» A=0.001, -0.501
A=-0.05, -0.45
»—x A=-0.1,-0.4
*—¥* A=-0.15, -0.35
o0 2=0.2,-0.3

00041
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® No violation of additivity principle has been reported to date in open ID
nonequilibrium diffusive systems.



DYNAMIC PHASE TRANSITIONS IN FLUCTUATIONS

o MFT + Additivity Principle = powerful tool to compute |D current LDFs

o However, MFT allows for dynamic solutions in general:

@ \What is their meaning! G(J) = — lim - min {/ dt/ gz W@t + Dip mp(“” t) —alp )E]2}

T—00 T {p,j}} 20(p)

@ Do they appear! Can we observe them!? .
pi(z,t) ; Ji(z,t)




DYNAMIC PHASE TRANSITIONS IN FLUCTUATIONS

o MFT + Additivity Principle = powerful tool to compute |D current LDFs

o However, MFT allows for dynamic solutions in general:

@ \What is their meaning! G(J) = — lim - min {/ dt/ gz W@t + Dip mp(“” t) —alp )E]2}

T—00 T {p,j}} 20(p)

@ Do they appear! Can we observe them!?

p_](.’lt,t) ) jJ(w:t)

o YES!! Additivity scenario eventually breaks down for large fluctuations via a

dynamic phase transition at the fluctuating level involving a symmetry breaking

o Optimal path I1s a localized traveling wave. Observed only for periodic systems!

", 0,75=0 .
pi(z,t) =wy(z — vt) PITC2II =D () = J — vpg + vw (T — vt)
Jo ps(z)dz=po

¢ Lesson: rare events are generically associated with coherent, self-organized patterns

which enhance their probability
Bodineau & Derrida, PRE 72,0661 10 (2005)



SPONTANEOUS SYMMETRY BREAKING IN FLUCTUATIONS

Pl. Hurtado&Garrido, PRL 107, 180601 (2011)

(@) lgl<qc o 2 4 6 8 10 (b)|ql>qc

/ﬂ"'ﬁ'—p-}_‘ﬁh%

(,07;, ,Oz'+1) — (10;7 ,0§+1>

p; = p(pi + pit1)

Pir1 = (L =p)(pi + pit1)

X X
@ |J| <Je:sum of weakly-correlated events — Gaussian statistics

¢ ||| > Jc: coherent traveling wave + energy localization — non-Gaussian statistics
¢ Striking phenomenon: Isolated equilibrium system with no external fields
¢ Spontaneous symmetry breaking in |d:translation invariance

e Symmetry-breaking instabilities forbidden in equilibrium may happen in fluctuations



SPONTANEOUS SYMMETRY BREAKING IN FLUCTUATIONS

i

30

e — Llu()\)':maX[G(J)—i—)\J]

J

0 02 0.4 06 08

X

X

Pl. Hurtado&Garrido, PRL 107, 180601 (2011)

¢ Excellent comparison of data with MFT
predictions as NT

¢ [J]| > Jc= TT: non-quadratic G(q) and ()
— Non-Gaussian statistics

o Clear signature of phase transition in
configurations (A>A.= TT): energy
localization + traveling wave

W, (x)




WASEP: 5SB IN FLUCTUATIONS, BUT DIFFERENT. ..

; " C.RE, Garrido & Hurtado, PRE 87,0321 15 (2013)
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e Main differences with KMP: critical field |E| o <0— |E,| =

WASEP

v po(1 — po)

® Emergence of a macroscopic jammed state which hinders transport of particles to
facilitate current fluctuations well below the average



D-DIMENSIONS (D> 1)




AWEAK ADDITIVITY PRINCIPLE (WAP) IN D> |

¢ Empirical current: Geometry:
@ Gradient along x-direction
/ dt/ dr j(r,t) = (J;,J 1) @ Periodic along all other,
(d-1) directions
+7 LG ()

¢ Probability of a current fluctuation: P (J) ~ e
(no external field E for simplicity)

G(I) = — lim —mln {/ dt/dr i+ D(p)Vp) -5 )(j+ﬁ(p)vp)}

T—00 2T {P J}o

C.PE, Garrido & Hurtado, preprint (2015)
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o Additivity: assume dominant paths to be time-independent

PEN 0ep+v-5=0,

j(r) S Vi) =0

® The relevant current fields are divergence-free but possibly structured

C.PE, Garrido & Hurtado, preprint (2015)



AWEAK ADDITIVITY PRINCIPLE (WAP) IN D> |

¢ Empirical current: Geometry:
@ Gradient along x-direction
/ dt/ dr j(r,t) = (J;,J 1) @ Periodic along all other,
(d-1) directions
+7 LG ()

¢ Probability of a current fluctuation: P (J) ~ e
(no external field E for simplicity)

G(I) = — lim —mln {/ dt/dr i+ D(p)Vp) -5 )(j+ﬁ(p)vp)}

T—00 2T {P J}o

o Additivity: assume dominant paths to be time-independent

PEN 0ep+v-5=0,

j(r) S Vi) =0

® The relevant current fields are divergence-free but possibly structured

¢ Periodicity suggests relevant fields exhibit structure only along gradient, x-direction

Ym0 i .- [ i

C.PE, Garrido & Hurtado, preprint (2015)



AWEAK ADDITIVITY PRINCIPLE (WAP) IN D> |

¢ Current LDF under wAP: G (J) = — min / dr Ly (p,j1;J)

J | (X .
... T constraints:

N2
[J) + Di(p)p'(2)]* zd: i\ (@) @ Boundary conditions
201(p) 204(p) @ Empirical L current:

1
JJ_:/ d:l?JJ_(X)
0

L:W(/OajJ_aJ) —

a=2

C.PE, Garrido & Hurtado, preprint (2015)



AWEAK ADDITIVITY PRINCIPLE (WAP) IN D> |

1
¢ Current LDF under wAP: G (J) = — H%H)l / dr Ly (p,j1;J)
p(x 0

5 jti(X) (@), 2 + constraints:
Low(p,ji;d) = ) + Di(p)p'(@)] Z Jji (z) @ Boundary conditions

201(p) “— 204(p) @ Empirical L current:

1
JJ_:/ d:l?JJ_(X)
0

¢ Introduce (d-1) Lagrange multipliers
L (p,5133) = Lo(p,jr; T) = AL - joL(x)

e Differential equation for the optimal density profile pj(z)
d

Dy(0)%0/(2)? = I + 01 (p)[2K — 3 A (o)

a=2
¢ Optimal current field and Lagrange multipliers: jj(x) = (JH,jJ_,J(ZC))

1
](f,)I( ) = ASfX)O-O{(IOJ) end )\(f> — Jia)// dr oo (p3)
0

® jj(x) structured along gradient direction in all orthogonal components, and

locally coupled to pj(x) via the mobility G(p)
Villavicencio-Sanchez & Harris, arXiv: 1508.07/945 (2015)

C.PE, Garrido & Hurtado, preprint (2015)



WEAK VS STRONG ADDITIVITY

¢ Strong Additivity Principle (sAP): straigshtforward extension of the |d-AP to high-d

1 1
Gs(J) = —min/ de Ls(p;d) = —/ d:cﬁs(pgs);J)
0

p(z) 0

Ls(p;d) =

i+ Di(p)p @] < S
201 (p) -2 200(p)

a=2

C.PE, Garrido & Hurtado, preprint (2015)



WEAK VS STRONG ADDITIVITY

¢ Strong Additivity Principle (sAP): straigshtforward extension of the |d-AP to high-d

1 1
Gs(J) = —min/ dx Ls(p;J) = —/ dmCS(pSS);J)
0

p(z) 0

)+ Di(p)p (2))? Z g

Ealpid) = 201 (p) T2 550(p)

a=2

¢ Which conjecture (weak AP vs strong AP) yields a better maximizer of the

current MFT action?
1

Gw(J) = — min / de Ly(p,ji(x);d) = —/ da:ﬁw(p_(lw);J)

i Jo .
/ 2 d (a)? In general
Lu(p:3) = i +§1((p ))p S2 e . S P T
g1\p a=2 2[.[0 dCBJa(p)]

C.PE, Garrido & Hurtado, preprint (2015)



WEAK VS STRONG ADDITIVITY

¢ Strong Additivity Principle (sAP): straigshtforward extension of the |d-AP to high-d

1 1
Gs(J) = —min/ dz Ls(p;J) = —/ dz Ls(p$; T)
0 0

p(z)

Ls(p;d) =

i+ Di(p)p @] < S
201 (p) -2 200(p)

a=2

¢ Which conjecture (weak AP vs strong AP) yields a better maximizer of the

current MFT action?
1

Gw(J) = — min / de Ly(p,ji(x);d) = —/ da:ﬁw(p_(lw);J)

i Jo .
/ 2 d (a)? In general
Lu(pid) = +D1((p ))p S2 g . N, T
| 201(p = 2| Jy dzoa(p))
a= 0 Q

e |ntuition suggests that the wAP should offer a better solution as it includes
additional degrees of freedom that the system at hand can put at work to improve

its large deviation function
C.PE, Garrido & Hurtado, preprint (2015)



WEAK VS STRONG ADDITIVITY

1
¢ Define functional Fy(v;J) = —/ dzLy(1;J), with £ = s, w such that
0

) B (w) | In general
Gs() = Fulpy))  Cul®) = Fules™) 2§ @) # 05

C.PE, Garrido & Hurtado, preprint (2015)



WEAK VS STRONG ADDITIVITY

1
¢ Define functional Fy(v;J) = —/ dzLy(1;J), with £ = s, w such that
0

i

Gs(J) = .Fs(pgs)) Gw(J) = fw(ﬂgw)) In general

o5’ () # 5 ()
e Since pf,“’) (z) is the maximizer of the wAP action, clearly

FulpS) = Fu(w;3)  Vo(z) # o5 (2)

C.PE, Garrido & Hurtado, preprint (2015)



WEAK VS STRONG ADDITIVITY

1
¢ Define functional Fy(v;J) = —/ dzLy(1;J), with £ = s, w such that
0

Go(3) = F(05)

(w)

G (J) = Ful(p§)

e Since py ' () is the maximizer of the wAP action, clearly

FulpS™) > Foulh; J)

vap(z) # p5 (x)

i

In general

oy (@) # 05" ()

¢ Compare both functionals for same profile, A, = ]:W(pgs)) — ]:s(PEIS))

d JJ(_Oz)2
Ays = Z 9
=2

1

1
/ dx
0 Tl

p$)

1

1 S
I de oo (p5))

>0

C.PE, Garrido & Hurtado, preprint (2015)



WEAK VS STRONG ADDITIVITY

1
¢ Define functional Fy(v;J) = —/ dzLy(1;J), with £ = s, w such that
0

i

In general

Go(3) = Fo(p§) Gu(d) = Fulp5"”) o9 (@) # o3 (@)

e Since pf,‘”) (z) is the maximizer of the wAP action, clearly

FulpS) = Fu(w;3)  Vo(z) # o5 (2)

¢ Compare both functionals for same profile, A, = fw(pff)) — ]:s(PEIS))

d_gl@? [ 1 1 '
A= = /dx DN oy | =
a=2 : _ 0 O (IOJ ) f() daj oxe (IOJ )_

® | ast inequality Is a particular instance of reverse Holder inequality

/01 dzog ' (p) 2 [/01 darcfou(p)]_1

o [herefore fw(pf,"")) > fw(PSS)) > ]:s(,OSS)) = 1Gw(J) > G5(J)

C.PE, Garrido & Hurtado, preprint (2015)



WEAK VS STRONG ADDITIVITY

¢ WWhen compared to the strong AR the weak AP always yields a better maximizer
of the macroscopic fluctuation theory action for currents

Gw(J) > G4(J)

e This result singles out the weak Additivity Principle as the relevant simplifying
hypothesis to study current statistics in general d-dimensional driven diffusive
systems

e |Interestingly, both the sAP and wAP yield the same result only for constant
mobility, or for current fluctuations parallel to the gradient direction:

oa(p) =04 Va J=(J,JL.=0)

e his observation helps in making sense of previous, seemingly contradictory results

C.PE, Garrido & Hurtado, preprint (2015)
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ZRP-WEAK ADDITIVITY VS EXACT RESULTS  “e® -« o
C.P E., Garrido & Hurtado, preprint (2015) mee 9o _99%n
. . h P
2d ZRP with constant tes ha: Do (p) = i Oalp) = 2ha——
o with constant jump rates hy (p) TEWE (p) T+

Villavicencio-Sdnchez & Harris, arXiv: 1508.07/945 (2015)
¢ Quantum Hamiltonian formalism + factorization property = exact results, L=10°

pPL =
PR — 0.1
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¢ Quantum Hamiltonian formalism + factorization property = exact results, L=10°
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¢ Quantum Hamiltonian formalism + factorization property = exact results, L=10°
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ZRP.-WEAK ADDITIVITY VS EXACT RESULTS

C.PE, Garrido & Hurtado, preprint (2015)

® 2d ZRP with constant jump rates ha: Do (p) =

-0.5

-1.0

-1.5

-2.0

-2.5
0

Villavicencio-Sdnchez & Harris, arXiv: 1508.07/945 (2015)
¢ Quantum Hamiltonian formalism + factorization property = exact results, L=10°
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ZRP:WEAK ADDITIVITY VS EXACT RESULTS 728 .- 8=
C.PE, Garrido & Hurtado, preprint (2015) B —=—=-= [E

ha
¢ 2d ZRP with constant jump rates ha: Do (p) =

O' —_—
(1+p)? L+p
Villavicencio-Sdnchez & Harris, arXiv: 1508.07/945 (2015)
¢ Quantum Hamiltonian formalism + factorization property = exact results, L=10°
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® The agreement between wAP predictions and exact matrix computations for
L=10" is excellent, while sAP predictions fail outside the gradient direction, the
discrepancy being maximal for orthogonal fluctuations and increasing with |



KMP:-WEAKADDITIVITY VS SIMULATIONS s

C.PE, Garrido & Hurtado, preprint (2015)

¢ More complex 2d-KMP model of heat transport

T, =2 D(p)=1/2 ; olp) =p’
Tpr =1
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KMP.-WEAK ADDITIVITY VS SIMULATIONS e+
C.PE, Garrido & Hurtado, preprint (2015) T o Tl
o More complex 2d-KMP model of heat transport ' L1 y '

Ty, =2 D(p)=1/2 ; o(p)=p° ST
ITr=1 p(z) = max(G(I) + 23
T T T T T T T Z — i —I— (S

e L=10 ¢ L=20 m L=32 — WAP € — Tlgl _ Tgl




KMP:-WEAK ADDITIVITY VS SIMULATIONS

C.PE, Garrido & Hurtado, preprint (2015)

® More complex 2d-KMP model of heat transport

Ty, =2 D(p)=1/2 ; a(p)=p’
Tpr =1
0.1 . ® |z|=0.10 ¢ |z|=0.21 — wWAP[—
i ¢ =0 m |[z|=0.14

L L




KMP:WEAK ADDITIVITY VS SIMULATIONS o+

C.PE, Garrido & Hurtado, preprint (2015) T —t— T 1T 2l

¢ More complex 2d-KMP model of heat transport ' Ll L r) '
Iy =2 D(p)=1/2 ; oa(p)=p’ AR

fr=1 w(z) = max|G(J) +z - J]

Z
o |z|=0.10 & |z|=0.21 — wAP i
|z|=0.14 |z|=0.28

10 0.2 04 0.6 0.8
X X

¢ Double-bump structure in Y(z) vs ¢ as predicted by wAP. Moreover, finite-size
data clearly converge to the wAP prediction as L increases



OTHER MODELS

¢ Excellent comparison of wAP predictions against numerical data in other cases:
7 |sotropic 2d Random Walkers (RW) under density gradient
@ Anisotropic 2d Zero Range Process

& Etc.

C.PE, Garrido & Hurtado, preprint (2015)



SUMMARY

o The Additivity Principle (AP) of Bodineau & Derrida is a powerful tool to
compute current LDFs within Macroscopic Fluctuation Theory (MFT)

® We have extended the Additivity Principle to general, d-dimensional
nonequilibrium driven diffusive systems

e Crucially, the existence of a divergence-free, structured current vector field at
the fluctuating level, coupled to the local mobillity, turns out to be essential to
understand current statistics in d> |

® wAP predictions have been tested against both exact matrix results and
simulations of rare events in different paradigmatic models of transport in d=2,
and a remarkable agreement is found in all cases.

® We prove that, when compared to the straightforward extension of the AP to
hish-d (sAP), the so-called weak AP (WAP) always yields a better maximizer of
the macroscopic fluctuation theory action for current statistic
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DYNAMIC PHASE TRANSITION
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DYNAMIC PHASE TRANSITION IN 2D

¢ Questions: Dynamic phase transitions in high-d? Traveling
wave structure! Other symmetry-breaking solutions! ...

® DPT in 2d: way more complex!! PDE, multiple solutions, ...

1 1 :
25
2
1.5
1
3
3 0.
3.0 25 300 0 2.5
2 2.5 0 ! 1.5
25 15 2} 1'
. 2} 1 = 05
> 1ol 05§ 18] 0
,;, 1.5 0 1
1
; 05 | '
. : s B
0.5 s 0 ~—— 6
%0 * AR 5 '
S oA “ y > 7 =g
? X 0.6 ‘0—3\\1./0 2 E
w(x,y)=w(y) o{X,y)=m(x)
3
3. 3.5
25 1.5
> 27 0.5
3 .
§1.? 0
St

Tizon, Espigares, Garrido & Hurtado, preprint
(OO | B



DYNAMIC P

¢ Questions: Dynamic phase transitions in high-d? Traveling
wave structure! Other symmetry-breaking solutions? ...

® DPT in 2d: way more complex!! PDE, multiple solutions, ...

¢ Essential role of large-scale simulations to ellucidate the nature
of this phenomenon in more complex srtuations

e Extensive simulations of current statistics in 2d VWASEP:
SSB at the fluctuating level in 2d!!

ASE TRANSITION IN 2D

0 T T | | |
L=12
oL 4
¢=0O0rad ©
¢p=mn/drad - .
4 | ¢=n/2rad  * f -
. ¢=8n/4rad v '
61 6L ¢=mn rad o © E |
) Theory
Y
-8 + -
World record!?? 5x10° -0 " sE -
clones evolving in parallel ’ s s s 10
ID+El Tizdn, Espigares, Garrido & Hurtado, preprint

(OO | B



DYNAMIC PHASE TRANSITION IN 2D

¢ [he phase transition is most evident at the configurational

level, but ... what types of structures appear beyond the
critical current?

o o
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DYNAMIC PHASE TRANSITION IN 2D

¢ The phase transition is most evident at the configurational

level, but ... what types of structures appear beyond the
critical current?

o

o
w

3
2.
2
1.
1
0.
0

5 25
3.0 ;.s 2: , 1 >
25 15 .2 :'5
- 2f R |
;? 1.5+ 0.5 % | ghs
*g ' 0 1
1 05 L
05t % Op—_ 50
(A — 6 0'—2-‘_“[—__ 4 y
0 . . 4 y — 3' 05 5g— 92
: . 2 E '
? .
o(x.y)=wm(y) o{X,y)=0(X)
3
g 3.5
25 1.5
> 27 05
= !
31.? - 0
05 ¢ F\/{g// 1
s g 8
Tz\z 4 y
0.
> & a2

» Measure the dispersion of the instantaneous center of mass position for different
slices of the system in the x- and y-directions

Tizon, Espigares, Garrido & Hurtado, preprint
(OO | B



DYNAMIC PHASE TRANSITION IN 2D

¢ [he phase transition is most evident at the configurational
level, but ... what types of structures appear beyond the =

0
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» Measure the dispersion of the instantaneous center of mass position for different
slices of the system in the x- and y-directions
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DYNAMIC PHASE TRANSITION IN 2D

¢ The phase transition is most evident at the configurational
level, but ... what types of structures appear beyond the
critical current!

A+E|=2, ¢=0 rad h e ' A+E|=2, ¢=n/2 rad
& 8 o s |

L=10

. ¢=Orad o

. ¢=Orad o

o2 * C¢=nfdrad  ©
° ©¢=n/4rad e
e . ¢=m/2rad o
s ° o=n/2rad

| DG+El

e Measure the dispersion of the instantaneous center of mass position for different
slices of the system in the x- and y-directions

Tizdn, Espigares, Garrido & Hurtado, preprint
(OO | B



DYNAMIC PHASE TRANSITION IN 2D: MFT PREDICTIONS

¢ General stability analysis in 2d shows that flat (homogeneous) solution becomes
unstable against small space-time perturbations whenever

J2 D 2 w(xy)=ofy)
o,ll(po) ( 5 — EQ) > 87T2 (PO) i
o(po) o (po) l
0'30"‘6.‘2-- M

® The first instability to kick in has the form of a |d-type traveling wave + ¥ &%

¢ The variational problems looks ugly but can be solved (numerically) for the |d-
projection case

' ! (r ’ r)- (o(r — 2V — w(r
w(rgrzlsg?r),v//\erU(w) [(J—V(ﬂo—w( ))) +<’0( ) (\P( )+2J ’ (/)() ( )) —_— A@(r)drzo

+2D(w)Vw(r)) + o*(w)E* + Dz(w)(v‘*’(r)ﬂ

¢ Violations of additivity happen in d-dimensional periodic systems via a dynamic phase
transition to a traveling-wave phase with broken symmetries, for which divergence-free
but structured current fields also play a key role.

Tizdn, Espigares, Garrido & Hurtado, preprint
(OO | B



DYNAMIC PHASE TRANSITION IN 2D: MFT PREDICTIONS

¢ General stability analysis in 2d shows that flat (homogeneous) solution becomes
unstable against small space-time perturbations whenever

J2 D 2 w(xy)=ofy)
o,ll(po) ( 5 — EQ) > 87T2 (PO) i
o(po) o (po) l
0'30"‘6.‘2-- M

® The first instability to kick in has the form of a |d-type traveling wave + ¥ &%

¢ The variational problems looks ugly but can be solved (numerically) for the |d-
projection case

' ! (r ’ r)- (o(r — 2V — w(r
w(rgrzlsg?r),v//\erU(w) [(J—V(ﬂo—w( ))) +<’0( ) (\P( )+2J ’ (/)() ( )) —_— A@(r)drzo

+2D(w)Vw(r)) + o*(w)E* + Dz(w)(v‘*’(r)ﬂ

® Crucial role of divergence-free but structured field (r)

¢ Violations of additivity happen in d-dimensional periodic systems via a dynamic phase
transition to a traveling-wave phase with broken symmetries, for which divergence-free
but structured current fields also play a key role.

Tizdn, Espigares, Garrido & Hurtado, preprint
(OO | B



Hurtado, C. Espigares, Pozo, Garrido, PNAS 108, 7704 (201

THE ISOMETRIC FLUCTUATION RELATION

e Within MFT + sAP, invariance of optimal paths leads to Isometric Fluctuation

Relation (IFR) T - Qo) o
. P)] reversivility
GSJz—mln/dr y or(r) = -
ey ( ) o(r) Ja 20_(p) ( pJ( ) p|J|( )
\ 1 [P ,
i g |y | = @)

i ,/_ 1.0 J/ — ﬁdq] - IJI| — IJl



Hurtado, C. Espigares, Pozo, Garrido, PNAS 108, 7704 (201

THE ISOMETRIC FLUCTUATION RELATION

e Within MFT + sAP, invariance of optimal paths leads to Isometric Fluctuation

Relation (IFR) . [J — Qg (p)] ’ reversivility
= /A T 20(p) £3(E) = P )

J =RqJ = Y| =|J|

PH., C. Espigares, Pozo, Garrido, |SP 154,214 (2014)
Villavicencio, Harris & Touchette, EPL, 105, 30009 (2014)
Kumar et al, PRE 91,030102(2015)

Lacoste & Gaspard, PRL 113,240602 (2014)

¢ Tested in simulations of rare events for different stochastic lattice gases, exact matrix
computations and even experiments. Generalized to anisotropic systems and
various equilibrium systems with broken symmetries

@ Small deviations from IFR observed for large current fluctuations are related to the
presence of the structured, divergence-free optimal current vector field. However,

generalized IFR _ 1 P [T(x)]] OHp] .
i 2 b)) = T -7

T—0C TLd



SYMMETRIES IN NONEQUILIBRIUM FLUCTUATIONS

o [ime-reversibility sets strong constraints on nonequilibrium current fluctuations

os PO

1
lim —ln[

T—o0 T L4

Pr(J)
Pr(J)

]:G{J—T)

J =RqJ = |J|=|J|

PH., Espigares, Pozo, Garrido, PNAS 108, 7704 (2011)



SYMMETRIES IN NONEQUILIBRIUM FLUCTUATIONS

o [ime-reversibility sets strong constraints on nonequilibrium current fluctuations

¢ Hierarchy of equations for the cumulants of the current distribution, coupled
via the generators &£ of d-dimensional rotations PR,

n
(n) +1 _
ZMal...ai_lﬁiaul...anﬁﬁiat + E’YVGV/‘L’(YZL-?CM =0
i=1

o5 PU)

e Example in d=2 (def. AJ, = Jo — (Ja)c)

(Jo)e = TL? [e_f,;(AJyz)E — ey(AJmAJy)e]

(Jy)e = TL?[ey(AJ2)e — (AT ATy)] Jim. ﬁm [ 2((}))] e (T )
2(0J,ATy)e = TL? [€y(AT}))e — €x(ATZAT) ] J =RaJ = |J|=|J|

7L? :ex(AJ3>e - €y<AJxAJ§>6]
TL? [e2 (AT ATY)e — ey (AJ2ATy) ]

(ATZ)e — (ATy)e

¢ Further consequences: Green-Kubo integrals, hierarchy for nonlinear response

coefficients, etc | |
Test the IFT!! ... Simulation of rare events

7—

‘
PH., Espigares, Pozo, Garrido, PNAS 108, 7704 (201 1)



SYMMETRY IN FLUCTUA

L i
o feufE
2

Corml
5

ONS: TESTING THE [FT

‘ ¢ |[FT is numerically confirmed with

+ |J|=0.268

|J|=0.293

« J|=0.319
« J|=0.345
« MI=0.371

|J|=0.397
|J|=0.423
|J|=0.448

« J|=0.500
+ J|=0.526

L o .

T | ! OJ
0.04 -G(J) o G(J’) — |C|J|(COSG o cosgl) ]
S i
2 0.02f ” -
5 &
| / —
0] e
~, : s’ B
- -0.02 o
- >~
‘004 -n ." ]
- R R—
0.2 -0.1 0 0.1 vz
cos 0 -cos O

+ |J|=0.706

|J|=0.552
|J|=0.577
|J|=0.603
|J|=0.629
|J|=0.655
|J|=0.681

-

high precission

e Optimal profiles remain invariant
under current rotations

e Also confirmed for hard-disks:
IFT valid for hydrodynamic systems




WHAT ARE LARGE DEVIATION FUNCTIONS?

Examples

¢ Density distribution in large subsystem @
P(n/v = p) =< e"Z(r)

¢ Time-integrated current for long times
P(Q:/t =q) < /(@)

e LDFs have a typical shape
I(p), F(q)

0




WHAT ARE LARGE DEVIATION FUNCTIONS?

Examples

¢ Density distribution in large subsystem
P(n/v = p) =< e"Z(r)

¢ Time-integrated current for long times
P(Q:/t =q) < /(@)

e LDFs have a typical shape

I(P), F(q) Why LDFs are important?

0

® Rate of convergence toward average

¢ Equilibrium: LDFs = entropy/free energy
Plp(Z)] ~ exp ( — LYZ[p(Z)])

To@)] = 1 | d7(Flp(@) - £(67)

¢ Nonequilibrium: LDFs extend the notion of
free energy out of equilibrium




MACROSCOPIC FLUCTUATION THEORY (Il

| . 1 T 1 .
¢ Fuctuations of space&time-averaged current — g = —/ dt/ dx j(x,t)
T Jo 0
1

~ o TTNG(q) G(q) = —; T-1p, 7 TN G+ Dlplap)?
Frlg)~e o T " ZT[M]__/O dt/o da=? 2al[Op] )
S——————————

¢ Optimal profiles#steady profiles: Typical path to

sustain a given fluctuation 280

2t

Po(X;1JI)

¢ Additivity principle (Bodineau&Derrida, PRL 2004): _
time-independent optimal profiles "8

Pa(@,t) = po(a) 5 Jo(z,t) =q L

/1 o (q + D[P]aa;ﬂ)
0 201p]

G(q) = — min
p(x)



MACROSCOPIC FLUCTUATION THEORY (Il

| . 1 T 1 .
¢ Fuctuations of space&time-averaged current — ¢ = —/ dt/ dz j(x,t)
7 Jo 0
1

~ e TTNG(q) G(q) = — T-1p, 7 T Y+ Dlplo.p)?
Frlg)~e o T 7 ZT[M]__/O dt/o da=? 2al[Op] )
S ) J ' . ) J ' . i .

¢ Optimal profiles#steady profiles: Iypical path to : _
sustain a given fluctuation “F p

o .

¢ Additivity principle (Bodineau&Derrida, PRL 2004): Pe,(X)
time-independent optimal profiles "o .

Po(X;1JI)

Pa(2:t) = pg(2) 5 Jolo ) =q e

o 1d (q+D[p]3mP) x
(9) = _g%g)l/o . 20| p] pq(T,t) = po; Jelx, 1) =g

e For isolated systems, flat profiles are always solution .. G(q) = —¢?/2

e |s this the whole story? ... NO!! Gaussian statistics!

ﬁ

o Addrtivity scenario eventually breaks down for large fluctuations (|q| > qc):
spontaneous symmetry breaking at the fluctuation level



o | ocal stability of flat profiles against small perturbation

Bodineau&Derrida, PRE 2005 g
PHASE TRANSITION IN MFT <\A N

Instability qe| = 271D (po)\/20(po)/o" (po)

"‘.
® For |g|>qc = traveling wave: p,(z,t) = w,(z — vt) = j,(x,t) = g — vpo + vw,(x — Vi)

dx

G(q) = — min

wq(T),v

/1 [q — vpo + vwy(x)]” + w! (2)? Dlw,)?
0 20[‘“(1]



® | ocal stability of flat profiles against small perturbation R

Bodineau&Derrida, PRE 2005 e
PHASE TRANSITION IN MFT \F N

Instability qe| = 271D (po)\/20(po)/o" (po)

".
® For |g|>qc = traveling wave: p,(z,t) = w,(z — vt) = j,(x,t) = g — vpo + vw,(x — Vi)

dx

G(q) = — min

wq(T),v

/1 [q — vpo + vwy(x)]” + w! (2)? Dlw,)?
0 20[“’(1]

¢ Equation for optimal wave profile
[C] — Upo T qu(x)]Q B w;(g;)QD[qu _ 20[wq]{01 + ngq(x)}

® Wq(X) symmetric with single minimum W ;=W(x) and maximum W2=W(x2) such
that |xo-xi|=1/2
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® [hese constraints fix constants C; and Ca: % = /w | le:((j)) dw 5= /w | ZU((C:)) dw

Zy(w) = [(qg —vpy + vw)* — 20(w)(Cy + C’Qw)]l/Q

e Optimal wave velocity:
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TRAVELING WAVE VELOCITY
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¢ Average wave velocity as a function of A and different sizes N
o Agreement with MFT very good for large enough N

o For |g| < gc —> v=2q. However, above gc the relation becomes nonlinear






