
A large deviation analysis of some properties of parallel
tempering and infinite swapping algorithms

Pierre Nyquist

Division of Applied Mathematics
Brown University

YEP XIII
EURANDOM, March 8 2016.

joint work with J. Doll and P. Dupuis.

Nyquist (Brown) LD analysis of infinite swapping March 8, 2016 1 / 24



Introduction Monte Carlo methods

Monte Carlo methods are typically both easy to understand and implement.
However, often suffer from the rare-event sampling problem:

The ergodic problem: Computing expected values (“thermodynamic
properties”) with respect to a stationary distribution.
Transition rate problems: Computing the probability of transitions
over [0,T], exit locations, and mean exit times with respect to
metastable states.
Functionals that depend heavily on the “tail” of the distribution (risk
measures).
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Parallel tempering and infinite swapping

Today’s focus: parallel tempering and infinite swapping.

Example problem: Compute average potential energy or other functionals
w.r.t. a Gibbs measure

µ1(dx) = e−V (x)/τ1λ(dx)/Z (τ1).

V is the potential of some complicated physical system, λ a reference
measure.

Think of V as having many local minima. A representative quantity of
interest is ∫

S
V (x)e−V (x)/τ1λ(dx)/Z (τ).
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Parallel tempering and infinite swapping

“Real” problems can have thousands of local minima.

For examples: Two well potential; α determines the level of asymmetry.
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Parallel tempering and infinite swapping

For λ Lebesgue measure, can use that µ1 is the stationary distribution of
the solution of

dX (t) = −∇V (X (t))dt +
√
2τ1dW (t).

For λ counting measure (finite state space S) can define Glauber dynamics
with stationary distribution

µ1(x) = e−V (x)/τ1/Z (τ1).

Consider a continuous-time Markov process X (t) with µ1 as invariant
distribution. Under ergodicity a numerical approximation to µ1 is given by
the empirical measure

ηT (·) =
1
T

∫ T

0
δX (t)(·)dt.
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Parallel tempering and infinite swapping

Densities we are attempting to sample for τ1 = 0.1.
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Parallel tempering and infinite swapping Parallel tempering

Idea: To accelerate convergence use parallel tempering (or replica
exchange).

The idea is to use multiple temperatures τ1 < τ2 < . . . .

Define Glauber dynamics Γ1
x ,y and Γ2

x ,y (rate matrices) corresponding to τ1
and τ1, respectively. Running two independent Markov processes, X1 and
X2 according to these dynamics produces a Monte Carlo approximation to

µ = µ1 × µ2 on S2
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Parallel tempering and infinite swapping Parallel tempering

Next, introduce swaps (at random times) between X1 and X2.
State-dependent intensity:

ag(x1, x2) = a

(
1 ∧ µ(x2, x1)

µ(x1, x2)

)
, a > 0.

Xa = (X a
1 ,X

2
2 ): two-component process with swap rate a. Generator:

Laf (x1, x2) = L0f (x1, x2) + ag(x1, x2) [f (x2, x1)− f (x1, x2)] .

Straightforward to check - e.g., detailed balance - that µ remains the
invariant measure.

How to choose the swap rate a to ensure fast convergence? Large
deviation analysis.
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Parallel tempering and infinite swapping Parallel tempering

The empirical measure λaT (·) = 1
T

∫ T
0 δXa(t)(·)dt satisfies an LDP

(T →∞) with rate function

I a(ν) = I 0(ν) + aJ(ν),

where, if θ = dν/dµ and q is the jump intensity associated with the
uncoupled dynamics,

I 0(ν) =

∫
S2

q(x)ν(dx)−
∫
S2×S2

√
θ(x)θ(y)Γx,yµ(dx),

and

J(ν) =

∫
S2

g(x1, x2)l

(√
θ(x2, x1)

θ(x1, x2)

)
ν(dx).

Monotonicity in a suggests letting a→∞.
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Parallel tempering and infinite swapping Parallel tempering

Now: switch temperatures/dynamics between the processes, not locations.

Take Ya = (Y a
1 ,Y

a
2 ) to be the temperature swapped version of Xa.

Consider the Markov process (Ya,Z a), where Z a = {Z a(t)} is a jump
process that indicates temperature configuration at time t.

The weighted empirical measure

ηaT (·) =
1
T

∫ T

0

[
1{Z a(t)=0}δ(Y a

1 (t),Y
a
2 (t))

(·) + 1{Z a(t)=1}δ(Y a
2 (t),Y

a
1 (t))

(·)
]
dt.

has the same distribution as the empirical measure of Xa. By ergodicity ηaT
converges to µ as T →∞.

Also, there is now hope for a limit in the swap rate a→∞.
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Parallel tempering and infinite swapping Infinite swapping

The limit process Y∞ = (Y∞1 ,Y∞2 ) is a pure-jump Markov process with
generator

L∞f (x1, x2) =
∑

(y1,y2)∈S2

[f (y1, y2)− f (x1, x2)] Γ∞x,y,

where

Γ∞x,y ==


ρ(x1, x2)Γ1

x1,y1 + ρ(x2, x1)Γ2
x1,y1 , y1 6= x1, y2 = x2,

ρ(x1, x2)Γ2
x2,y2 + ρ(x2, x1)Γ1

x2,y2 , y1 = x1, y2 6= x2,

0, otherwise,

and

ρ(x1, x2) =
µ(x1, x2)

µ(x1, x2) + µ(x2, x1)
.
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Parallel tempering and infinite swapping Infinite swapping

The limit of the weighted empirical measure ηaT is

η∞T (·) =
1
T

∫ T

0

[
ρ(Y∞1 (t),Y∞2 (t))δ(Y∞

1 (t),Y∞
2 (t))(·)

+ρ(Y∞2 (t),Y∞1 (t))δ(Y∞
2 (t),Y∞

1 (t))(·)
]
dt.

Ergodicity ⇒ η∞T → µ as T →∞.

Infinite swapping: Simulate Y∞ and use η∞T for numerical
approximations of µ.
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Parallel tempering and infinite swapping Infinite swapping

The limit process Y∞ has invariant measure

µ̄(x1, x2) =
1
2

[µ(x1, x2) + µ(x2, x1)] .

Connectedness of the density much improved compared to PT.
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Large deviation properties of Y∞

Large deviations: Let νT be the empirical measure associated with Y∞,

νT (·) =
1
T

∫ T

0
δY∞(t)(·)dt.

The sequence {νT} satisfies an LDP as T →∞ with rate function

I∞(ν) =

∫
S2

q∞(x)ν(dx)−
∫
S2×S2

√
θ(x)θ(y)Γ∞x,yµ̄(dx),

where θ = dν/d µ̄ and q∞ is the intensity associated with Γ∞.

Let M : P(S2)→ P(S2) be the mapping for which MνT = η∞T (also takes
µ̄ to µ). By the contraction principle we retrieve the LDP for {η∞T }.
Aim: Use this LDP to investigate properties of infinite swapping
algorithms.
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Large deviation properties of Y∞ Impact of asymmetry

The impact of asymmetry: The process Y∞ moves in a potential
landscape with four metastable points.
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Large deviation properties of Y∞ Impact of asymmetry

Turns out that asymmetry in the potential landscape is a hindrance to
convergence of parallel tempering and infinite swapping.
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intensity matrix of Y1 is ≈ Γ1

intensity matrix of Y2 is ≈ Γ2

intensity matrix of Y1 is ≈ Γ2

intensity matrix of Y2 is ≈ Γ1

Causes the process to move easily between three out of four stable points -
a “secondary metastability” has been introduced.
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Large deviation properties of Y∞ Impact of asymmetry

The effect of this secondary metastability is detected by the large deviation
rate function. Consider the optimization problem

inf{I∞(ν) : (Mν)((−∞, 0]× S) = µ((−∞, 0])(1− δ)}
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Large deviation properties of Y∞ Impact of asymmetry

The secondary metastability is also illustrated by the swapping of dynamics
during a simulation:
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Large deviation properties of Y∞ Impact of asymmetry

Accompanying the process Y∞ are the so-called particle-temperature
associations:

ρT =

(
1
T

∫ T

0
ρ(Y∞1 (t),Y∞2 (t)dt,

1
T

∫ T

0
ρ(Y∞2 (t),Y∞1 (t)dt)

)
.

Empirical measure on Σ2 = {{1, 2}, {2, 1}} - corresponds to temperature
assignments (τ1, τ2) and (τ2, τ1).

The convergence

ρT →
(
1
2
,
1
2

)
, T →∞,

provides a possible diagnostic for convergence of η∞T .
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Large deviation properties of Y∞ Impact of asymmetry

Joint LDP: If µ1 and µ2 are the unique invariant distributions of Γ1 and
Γ2, then {(η∞T , ρT )} satisfies an LDP (T →∞) on P(S2)× P(Σ2), with
rate function

I (γ,w) =

{
I∞(ν) : Mν = γ,

∫
S2
ρ(x)dν(x) = w1

}
.

Obtained from LDP for {νT} via contraction principle.
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Large deviation properties of Y∞ Impact of asymmetry

A first result: Suppose we fix a target measure γ ∈ P(S2). Then

inf{I 0(ν) : Mν = γ}

is attained at the symmetric measure

νsym(x) =
γ(x)

2ρ(x)
.

Interpretation: Regardless of the target measure γ, the most likely
measure ν such that Mν = γ has weights/particle-temperature
associations (1/2, 1/2).
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Large deviation properties of Y∞ Impact of asymmetry

A second result: Let Nε(w) denote an open ε-neighborhood of w in
P(Σ2) and similarly for Nδ(µ) for µ in P(S2) (weak topologies).

Let w∗ = (1/2, 1/2). For each ε > 0 there is a δ > 0 such that

P(η∞T ∈ Nδ(µ)|ρT ∈ (Nε(w∗))c)→ 0, T →∞.

Interpretation: The particle-temperature associations must converge to
(1/2, 1/2) if the empirical measure η∞T is to converge to the stationary
distribution µ.

Proof relies on studying the associated ergodic control problem.
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Thank you

Thank you!

J. Doll, P. Dupuis and P. Nyquist
A large deviation analysis of certain qualitative properties of parallel
tempering and infinite swapping algorithms
(On arXiv any day now...)
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