A large deviation analysis of some properties of parallel
tempering and infinite swapping algorithms

Pierre Nyquist

Division of Applied Mathematics
Brown University

YEP Xl
EURANDOM, March 8 2016.

joint work with J. Doll and P. Dupuis.

Nyquist (Brown) LD analysis of infinite swapping March 8, 2016 1/24



Introduction Monte Carlo methods

Monte Carlo methods are typically both easy to understand and implement.
However, often suffer from the rare-event sampling problem:
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Introduction Monte Carlo methods

Monte Carlo methods are typically both easy to understand and implement.
However, often suffer from the rare-event sampling problem:

@ The ergodic problem: Computing expected values (“thermodynamic
properties”) with respect to a stationary distribution.

@ Transition rate problems: Computing the probability of transitions
over [0, T], exit locations, and mean exit times with respect to
metastable states.

e Functionals that depend heavily on the “tail” of the distribution (risk
measures).
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Parallel tempering and infinite swapping

Today'’s focus: parallel tempering and infinite swapping.
Example problem: Compute average potential energy or other functionals
w.r.t. a Gibbs measure

p1(d) = eV mA(dx)/Z (7).

V is the potential of some complicated physical system, X a reference

measure.

Think of V as having many local minima. A representative quantity of

interest is

/ V(x)e VX1 \(dx)/ Z(7).
S
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Parallel tempering and infinite swapping

“Real” problems can have thousands of local minima.

For examples: Two well potential; o determines the level of asymmetry.
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Parallel tempering and infinite swapping

For A Lebesgue measure, can use that pj is the stationary distribution of
the solution of

dX(t) = —VV(X(t))dt + 2 dW(t).

For A counting measure (finite state space S) can define Glauber dynamics
with stationary distribution

() = eV Z(m).

Consider a continuous-time Markov process X(t) with p; as invariant
distribution. Under ergodicity a numerical approximation to p1 is given by
the empirical measure

;
nr() = ;/0 dx(r)()dt.
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Parallel tempering and infinite swapping

Densities we are attempting to sample for 7 = 0.1.
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Parallel tempering and infinite swapping Parallel tempering

Idea: To accelerate convergence use parallel tempering (or replica
exchange).

The idea is to use multiple temperatures 7 < 7 < .. ..
Define Glauber dynamics I'} | and ' (rate matrices) corresponding to 71
and 7, respectively. Running two independent Markov processes, X; and

Xo according to these dynamics produces a Monte Carlo approximation to

j=p1 X pp on S
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Parallel tempering and infinite swapping Parallel tempering

Next, introduce swaps (at random times) between X; and Xj.
State-dependent intensity:

ag(xi,x2) = a <1 A M(XZ’XI)> , a>0.
p(x1, x2)
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Parallel tempering and infinite swapping Parallel tempering

Next, introduce swaps (at random times) between X; and Xj.
State-dependent intensity:

ag(xi,x2) = a <1 A M(XZ’XI)> , a>0.
M(X17X2)

X? = (X{, X2): two-component process with swap rate a. Generator:
,Caf(Xl,Xg) == ﬁof(Xl,Xz) + ag(Xl,Xz) [f(Xz,Xl) — f(Xl,Xz)] .

Straightforward to check - e.g., detailed balance - that p remains the
invariant measure.

How to choose the swap rate a to ensure fast convergence?
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Parallel tempering and infinite swapping Parallel tempering

Next, introduce swaps (at random times) between X; and Xj.
State-dependent intensity:

ag(xi,x2) = a <1 A M(XZ’XI)> , a>0.
M(X17X2)

X? = (X{, X2): two-component process with swap rate a. Generator:
,Caf(Xl,Xg) == ﬁof(Xl,Xz) + ag(Xl,Xz) [f(Xz,Xl) — f(Xl,Xz)] .

Straightforward to check - e.g., detailed balance - that p remains the
invariant measure.

How to choose the swap rate a to ensure fast convergence? Large
deviation analysis.
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Parallel tempering and infinite swapping Parallel tempering

The empirical measure A3-(-) = + fOT dxa(¢)(+)dt satisfies an LDP

(T — o0) with rate function
() = 1°(0) + 2J(0)

where, if § = dv/dp and q is the jump intensity associated with the
uncoupled dynamics,

o) = / g(x)v(dx) - VIR yri(d),
S2 S2xS2

and

J(l/):/szg(xl,xz)/( ZEZZD v(dx).
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Parallel tempering and infinite swapping Parallel tempering

The empirical measure A3(-) = % foT 5xa(t)(')dt satisfies an LDP
(T — o0) with rate function

12(v) = I°(v) + aJ(v),

where, if § = dv/dp and q is the jump intensity associated with the
uncoupled dynamics,

P0) = [ abovid — [ Iyl
and

J(v) = /52 g(Xl,Xz)/( m> v(dx).

Monotonicity in a suggests letting a — oo.
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Parallel tempering and infinite swapping Parallel tempering

Now: switch temperatures/dynamics between the processes, not locations.
Take Y2 = (Y7, Y5) to be the temperature swapped version of X?.
Consider the Markov process (Y?, Z?), where Z2 = {Z?3(t)} is a jump

process that indicates temperature configuration at time t.

The weighted empirical measure

1 T
() =+ /O [1{Za(t):0}5(Yf(t)7Y;(t))(')+1{Za(t):1}5(Y§(t):Yf(t))(') dt.

has the same distribution as the empirical measure of X?. By ergodicity 1%
converges to p as T — o0.

Also, there is now hope for a limit in the swap rate a — oc.
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Parallel tempering and infinite swapping Infinite swapping

The limit process Y = (Y, Y5°) is a pure-jump Markov process with
generator

Lo (ae) = Y [y ye) = fla, )] TR,

(y17y2)652
where
P(X17X2)r>1<1,y1 + p(X27X1)r)2<1,y17 1 ?é X1, Y2 = X2,
My == { P01, x2)T%, ,, + 02, x1), .0 1= X1, Y2 # X2,
0, otherwise,
and
N(leXQ)

X1,X2) = .
P2 = e ) + )
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Parallel tempering and infinite swapping Infinite swapping

The limit of the weighted empirical measure 77 is

)
0 =7 [ OO 5 0o

(Y5 (1), YE(0)d(vze(0) vie(en()] .

Ergodicity = 03 — pas T — oo.

Nyquist (Brown) LD analysis of infinite swapping March 8, 2016 12 / 24



Parallel tempering and infinite swapping Infinite swapping

The limit of the weighted empirical measure 77 is

)
0 =7 [ OO 5 0o

(Y5 (1), YE(0)d(vze(0) vie(en()] .
Ergodicity = 03 — pas T — oo.

Infinite swapping: Simulate Y*° and use n3® for numerical
approximations of .
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Parallel tempering and infinite swapping [EGTLTESEWET T T3

The limit process Y°° has invariant measure

il ) = 5 [0, 22) + e x)]

Connectedness of the density much improved compared to PT.
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The limit process Y°° has invariant measure

i) = 5 Il ) + e, ).

Connectedness of the density much improved compared to PT.
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Large deviation properties of Y°°

Large deviations: Let v1 be the empirical measure associated with Y°°,

j
VT():;lA By o) ().

The sequence {v7} satisfies an LDP as T — oo with rate function

)= [ om0 - [ VIR,

S2xS2

where 0 = dv/dfi and g is the intensity associated with [*°.
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Large deviation properties of Y°°

Large deviations: Let v1 be the empirical measure associated with Y°°,

1 T
= T/O 5Yoo(t)(')dt

The sequence {v7} satisfies an LDP as T — oo with rate function

)= [ om0 - [ VI a(x

S2xS2

where 0 = dv/dfi and g is the intensity associated with [*°.

Let M : P(52) — P(5?) be the mapping for which My = % (also takes
fi to 11). By the contraction principle we retrieve the LDP for {n3°}.
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Large deviation properties of Y°°

Large deviations: Let v1 be the empirical measure associated with Y°°,

1 T
= T/O 5Yoo(t)(')dt

The sequence {v7} satisfies an LDP as T — oo with rate function
() = / () (dx) — VIO i dx
52 52x 2
where 0 = dv/dfi and g is the intensity associated with [*°.
Let M : P(52) — P(5?) be the mapping for which My = % (also takes
fi to 11). By the contraction principle we retrieve the LDP for {n3°}.

Aim: Use this LDP to investigate properties of infinite swapping
algorithms.
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Large deviation properties of Y Impact of asymmetry

The impact of asymmetry: The process Y* moves in a potential
landscape with four metastable points.
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Large deviation properties of Y Impact of asymmetry

Turns out that asymmetry in the potential landscape is a hindrance to
convergence of parallel tempering and infinite swapping.
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Large deviation properties of Y°° Impact of asymmetry

Turns out that asymmetry in the potential landscape is a hindrance to
convergence of parallel tempering and infinite swapping.

Y,
Y, Y
\\ R‘ Y,
5
intensity matrix of V] is &~ I['y intensity matrix of Y} is = I'y
intensity matrix of Y5 is & I'y intensity matrix of Y is ~ I’
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Large deviation properties of Y°° Impact of asymmetry

Turns out that asymmetry in the potential landscape is a hindrance to
convergence of parallel tempering and infinite swapping.

Yi K Y
\\ R‘ Y,
&

intensity matrix of V] is &~ I['y intensity matrix of Y} is = I'y

intensity matrix of Y5 is & I'y intensity matrix of Y is ~ I’

Causes the process to move easily between three out of four stable points -
a "secondary metastability” has been introduced.
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Large deviation properties of Y°° Impact of asymmetry

The effect of this secondary metastability is detected by the large deviation
rate function. Consider the optimization problem

inf{I=(v) - (Mv)((=00,0] x S) = p((—00,0])(1 - 9)}
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Large deviation properties of Y°° Impact of asymmetry

The effect of this secondary metastability is detected by the large deviation
rate function. Consider the optimization problem

inf{I=(v) - (Mv)((=00,0] x S) = p((—00,0])(1 - 9)}

Table: Optimal rate normalized to the value for « = 1 (symmetric potential)

o
) 1] 097 0.95 0.90 0.85
0.05 | 1 | 0.5605 | 0.3965 | 0.1833 | 0.09188
0.10 | 1 | 0.5709 | 0.4070 | 0.1898 | 0.09634
0.15 | 1| 0.5833 | 0.4200 | 0.1997 | 0.1026
0.20 | 1 | 0.5964 | 0.4341 | 0.2105 | 0.1103
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The effect of this secondary metastability is detected by the large deviation

rate function. Consider the optimization problem

inf{I°(v) : (Mv)((—o0,0] x S)

Optimal rate (normalized)

= p1((—=00,0])(1 = 0)}

5=0.05
— ——-45=0.10 4

5=0.15
RSN 5=0.20
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Large deviation properties of Y°° Impact of asymmetry

The secondary metastability is also illustrated by the swapping of dynamics

during a simulation:
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Large deviation properties of Y°° Impact of asymmetry

Accompanying the process Y are the so-called particle-temperature
associations:

o= (3 [ st v wa = [Tz v o)

Empirical measure on ¥ = {{1,2},{2,1}} - corresponds to temperature
assignments (71, 72) and (72, 71).

The convergence
11
pT — 57 E ) T— 00,

provides a possible diagnostic for convergence of nF.

Nyquist (Brown) LD analysis of infinite swapping March 8, 2016 20 / 24



Large deviation properties of Y°° Impact of asymmetry

Joint LDP: If y; and po are the unique invariant distributions of ' and
2, then {(n°, p7)} satisfies an LDP (T — o) on P(52) x P(X,), with
rate function

10w = {12015 M=, [ pdav0 = .

Obtained from LDP for {v1} via contraction principle.
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Large deviation properties of Y°° Impact of asymmetry

A first result: Suppose we fix a target measure v € P(S?). Then
inf{I°(v): Mv =~}

is attained at the symmetric measure

Vsym(X) =
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Large deviation properties of Y°° Impact of asymmetry

A first result: Suppose we fix a target measure v € P(S?). Then
inf{I°(v): Mv =~}

is attained at the symmetric measure

Vsym(X) =

Interpretation: Regardless of the target measure ~, the most likely
measure v such that My = ~ has weights/particle-temperature
associations (1/2,1/2).

Nyquist (Brown) LD analysis of infinite swapping March 8, 2016 22 /24



Large deviation properties of Y°° Impact of asymmetry

A second result: Let N (w) denote an open e-neighborhood of w in
P(X2) and similarly for Ns(u) for p in P(S?) (weak topologies).
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Large deviation properties of Y°° Impact of asymmetry

A second result: Let N (w) denote an open e-neighborhood of w in
P(X2) and similarly for Ns(u) for p in P(S?) (weak topologies).

Let w* = (1/2,1/2). For each € > 0 there is a § > 0 such that

P(n¥ € Ns(u)lpt € (Ne(w*))¢) = 0, T — oo.

Interpretation: The particle-temperature associations must converge to
(1/2,1/2) if the empirical measure 7 is to converge to the stationary
distribution p.

Proof relies on studying the associated ergodic control problem.
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Thank youl

@ J. Doll, P. Dupuis and P. Nyquist
A large deviation analysis of certain qualitative properties of parallel

tempering and infinite swapping algorithms
(On arXiv any day now...)
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