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Flashback on Donsker-Varadhan theory from the seventies Our theory

A weak LDP for occupation measures
Rate function is Legendre dual of principle eigenvalue

We have a d-dimensional Brownian motion (βt)t , d ≥ 2.

For a continuous function V in a bounded domain B, expect
integrals to grow exponentially:

E
[

exp
{ ∫ t

0
V (βs)ds︸ ︷︷ ︸

=t
∫
V (x)Lt(dx)

}]
∼ exp{t λ(V )︸ ︷︷ ︸

>0

}

Important object: Lt = 1
t

∫ t
0 δβsds (time spent on Borel sets).

Equivalently: then, exponential decay of probabilities:

P
(
Lt ' f 2dx onB

)
∼ exp

{
− tI (f 2)

}
‖f ‖2 = 1, f ∈ H1

0 (B)

I (f 2) = 1
2 ||∇f ||22 Donsker-Varadhan rate function.
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Theory suffers from the lack of full LDP

Crucial: theory needs compact state spaces.

Workaround: For non-compact spaces, sometimes, one point
compactification of Rd is enough (or, wrap your BM around a
torus).

Success depends on problem and limited scope.

Here is a problem where it does not work.
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The mean-field polaron problem
Physical problems often need statements on the whole space

Statistical mechanics:

For V ∈ C0(Rd) (think of V (x) = 1
|x |

in d = 3), still exponential growth??

Zt = E
[

exp

{
1

t

∫ t

0

∫ t

0
drds V (βs − βr )︸ ︷︷ ︸

=t
∫
Rd

∫
Rd V (x−y)Lt(dx)Lt(dy)

}]
∼ etρ? ρ > 0.

Even more: Can we say something about the measures

dQt =
1

Zt
exp

{
. . .

}
dP?

Starting point: Need full LDP for Lt in M1(Rd).

No full LDP exists, and projection on torus does not save us.
So, need a robust theory of large deviations via general
compactification.
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Probability measures are not compact
Need to identify regions where mass is accumulated

What do we want to compactify?

First start with M1(Rd). Not compact under the weak
topology.

Why? Mass may escape and leak out or spread too flat.

For any sequence (µn)n, locate regions with high
accumulation of mass. Recover lumps of masses one by one.

Set

pn(R) =

mass of biggest lump︷ ︸︸ ︷
sup
x∈Rd

µn(BR + x) ≤ 1

−→ p(R) n→∞ along a subsequence

−→ p1 ∈ [0, 1] R ↑ ∞
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Restrict measures on compact regions and shift, weak limit
Peel off the mass recovered. Now work with the leftover. Repeat

This means, decompose

µn = µn
∣∣
BR(xn)︸ ︷︷ ︸
αn

+ rest︸︷︷︸
βn

so that

the shift αn ? δxn ⇒ p1α1 weakly, along some subsequence.

We peel off αn from µn and work with the leftover βn.

Repeat the process for βn, recover mass p2 ≤ p1 so that
βn|a ball elsewhere, suitably shifted, ⇒ p2α2 along some
further subsequence.

Continue recursively: {µn}n concentrates on compact pieces
of mass {pj}j , which are widely separated, while the rest of
the mass 1−

∑
j pj dissipates. µn on these compact pieces,

when suitably shifted, converges along subsequences.
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Compactification
What is in the compactification? Pairs of (recovered masses, equiv. classes)

Quotient space of orbits

M̃ =M1

/
∼ with µ ∼ ν if ν = µ ? δx

M̃1 ↪→M? =

{{
pj , α̃j

}
j
: pj ↓ 0,

∑
j

pj ≤ 1, αj ∈M≤1
}

︸ ︷︷ ︸
all pairs of (mass, equivalence class)

Given any sequence (µn)n in M1(Rd), pass to its equivalence

class µ̃n in M̃1. There is a subsequence which converges to
some element in M?. What does it mean?

Conclude: M? is the compactfication of M̃1.
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Conclude: M? is the compactfication of M̃1.
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A key step: A new LDP in a compactified space
Turns out weak LDP for LT is not good enough

What can we do with this compact space M??

Equivalence classes L̃t ∈M?. This is the sequence we want to
work with.

How does P
(
L̃t ∈ C

)
behave? Have upper bound as t →∞

for all C ⊂M?closed?

Yes! Compactness helps: Need to prove the upper bound only
locally:

P
(
L̃t ' {(pj , α̃j)j}

)
optimal strategy: move ”independently” on distant regions

≤ exp

{
−
∑
j

pj I (αj)︸ ︷︷ ︸
}

where I (α) is the Donsker-Varadhan rate function.
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Have full LDP on M?

Our model is shift-invariant: Does not care about equivalence classes!

Theorem (M-Varadhan 2014)

The family of distributions L̃t satisfies a (strong) LDP in the
compact space M? with rate function∑

j

pj I (αj)

where I (·) is the Donsker-Varadhan rate function.

Upshot: Qt ◦ L̃−1t converges to δµ̃0 , with µ0 = ψ2
0 unique

maximizer of the free energy.
We have a model on a non-compact space. If model is
shift-invariant, we can address questions for exponential
growth of integrals/ exponential decay of probabilities!
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So Lt under Qt stays in the infinite tube.

But the tube is infinitely long!

Next step: Tightness: Lt can not fluctuate wildly in the tube.
Stays close to starting point.

Justification requires quite some work. Singularity of the
Coulomb potential is a serious problem here.

Culmination: Mean-field approximation of the Polaron:

Theorem (Bolthausen-König-M 2015)

Qt ◦ L−1t ⇒
∫
R3 dx ψ0(x)δθxψ2

0∫
R3 dx ψ0(x)
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