Model description

Hydrodynamics

Continuous angle dynamic

Hydrodynamics of a non-gradient model for collective dynamics

Clément Erignoux

CMAP, École Polytechnique

YEP XIII, Eindhoven March 11th 2016

Model description

Hydrodynamics

Continuous angle dynamic

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamics

Main result Non-gradient hydrodynamics Irreducibility

Continuous angle dynamic Extension of the model

Model description o ooooo Hydrodynamics

Continuous angle dynamic

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamics

Main result Non-gradient hydrodynamics Irreducibility

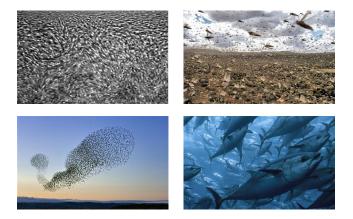
Continuous angle dynamic Extension of the model

Hydrodynamics

Continuous angle dynamic

Collective motion & Active matter

Collective behavior can be observed among numerous animal species



Model description

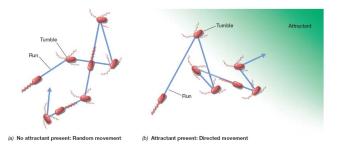
Hydrodynamics

Continuous angle dynamic

\rightarrow Classical representation : Individual Based Models (IBM) built around active matter.

Active Matter

System composed of many individuals, maintained out of equilibrium by an *energy influx at the individual level*.



Collective motion & Active matter	
000	
000	

Hydrodynamics

Continuous angle dynamic 00

イロト (同) (三) (三) (つ)

Two types of phenomena can arise in active matter models :

- \rightarrow Alignment phase transition
- \rightarrow Motility Induced Phase Separation (MIPS).

Hydrodynamics

Continuous angle dynamic

Alignment phase transition

Alignment

Alignment dynamics will create groups of particles moving together and adapting their speed

Original model by Vicsek&al. (1995, *Novel type of phase transition in a system of self driven particles*)

 $\mapsto N = \rho L^2$ particles move in the periodic domain $[0, L]^2$, with speed $v_i(t) = v \overrightarrow{e}_{\theta_i(t)}$

$$\begin{cases} x_i(t+1) = x_i(t) + v_i(t) \Delta t \\ \theta_i(t+1) = \langle \theta(t) \rangle_r + \xi_\eta \end{cases}$$

< ロ ト < 団 ト < 臣 ト < 臣 ト 三 の へ)</p>

Hydrodynamics

Continuous angle dynamic

Alignment phase transition

Alignment

Alignment dynamics will create groups of particles moving together and adapting their speed

Original model by Vicsek&al. (1995, *Novel type of phase transition in a system of self driven particles*)

 $\mapsto N = \rho L^2$ particles move in the periodic domain $[0, L]^2$, with speed $v_i(t) = v \overrightarrow{e}_{\theta_i(t)}$

$$\begin{cases} x_i(t+1) = x_i(t) + v_i(t)\Delta t \\ \theta_i(t+1) = \langle \theta(t) \rangle_r + \xi_\eta \end{cases}$$

Hydrodynamics

Continuous angle dynamic

Numerical results on related models

- Solon & Tailleur, 2013
- 🔋 Solon & al., 2015

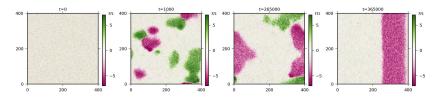


Figure: Emergence of global order for an alignment dynamics. From *Flocking with discrete symmetry, the 2d active Ising model*, Solon & Tailleur 2015.

Model description o ooooo Hydrodynamics

Continuous angle dynamic

Exact works

Several analysis and PDE based papers, based on *mean-field interactions* :

- \mapsto Each particle interacts with a large number of neighbors
- Degond, Motsch, 2007
- Bolley, Carrillo, Canizo, 2011

Hydrodynamics

Continuous angle dynamic

・ロト ・ 母 ト ・ ヨ ト ・

Motility induced phase separation

MIPS

Particles will tend to accumulate where they move more slowly

- MIPS can occur when the particle's velocity depends on the local density
- MIPS usually does not occur in models with alignment

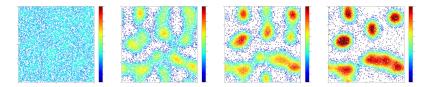


Figure: Coarsening effect in active matter. From Cates & Tailleur 2012.

Model description

Hydrodynamics

Continuous angle dynamic

・ロト ・ (目 ト ・ 目 ト ・ 日 -)

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamics

Main result Non-gradient hydrodynamics Irreducibility

Continuous angle dynamic Extension of the model

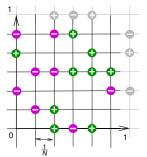
Hydrodynamics

Continuous angle dynamic

Description of the particle system

Two types of particles (+ and -) evolve on the **periodic square** lattice $\mathbb{T}_N^2 = \left\{0, \frac{1}{N}, ..., \frac{N-1}{N}\right\}^2$

- For each site x ∈ T²_N, we define η_x ∈ {-1, 0, 1}.
 → η_x = 0, empty site → η_x = ±1 site occupied by a particle ±
- We let η_x = η_x⁺ − η_x⁻, where η_x[±] = 1 iff x is occupied by a ± particle.

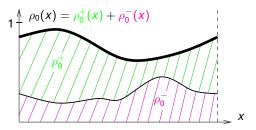


Hydrodynamics

Continuous angle dynamic

Initial configuration

- Initial macroscopic smooth profiles ρ_0^+ and ρ_0^- , $[0,1]^2 \rightarrow [0,1].$
- $\rho_0 = \rho_0^+ + \rho_0^-$ is the initial particle density



• Initial *local equilibrium* : independently for any $x \in \mathbb{T}_N^2$

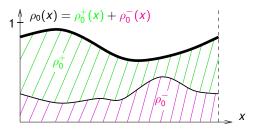
$$\eta_{X}(0) = \begin{cases} \pm 1 & \text{w.p. } \rho_{0}^{\pm}(x) \\ 0 & \text{w.p. } 1 - \rho_{0}^{+}(x) - \rho_{0}^{-}(x) \end{cases}$$

Hydrodynamics

Continuous angle dynamic

Initial configuration

- Initial macroscopic smooth profiles ρ_0^+ and ρ_0^- , $[0,1]^2 \rightarrow [0,1].$
- $\rho_0 = \rho_0^+ + \rho_0^-$ is the initial particle density



• Initial *local equilibrium* : independently for any $x \in \mathbb{T}^2_N$

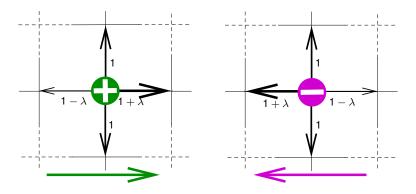
$$\eta_{X}(0) = \begin{cases} \pm 1 & \text{w.p. } \rho_{0}^{\pm}(x) \\ 0 & \text{w.p. } 1 - \rho_{0}^{+}(x) - \rho_{0}^{-}(x) \end{cases}$$

Model description

Hydrodynamics

Continuous angle dynamic

Weakly asymmetric exclusion



- Exclusion rule : if the target site is occupied, the motion is canceled
- $\lambda = \hat{\lambda} / N$ is the strength of the *weak asymmetry*

Model description

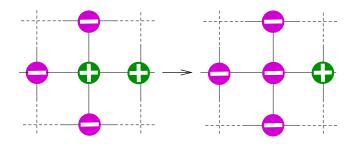
Hydrodynamics

Continuous angle dynamic

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

3

Glauber dynamics



 \mapsto *Ising type* alignment dynamics with inverse temperature β

- $\beta = 0$, no alignment
- $\beta \to \infty$, strong alignment

Model description

Hydrodynamics

Continuous angle dynamic

イロト 不得 トイヨト イヨト 二日

Generator of the dynamic

The Markov generator of the process is given by

$$L_{N} = N^{2} \mathcal{L}^{S} + \widehat{\lambda} N \mathcal{L}^{A} + \mathcal{L}^{G},$$

L^S: generator of the Symmetric Simple Exclusion Process (SSEP)

$$\mathcal{L}^{\mathcal{S}}f(\eta) = \sum_{x \in \mathbb{T}_{N}} \sum_{|z|=1} |\eta_{x}| \underbrace{(1-|\eta_{x+z}|)}_{\text{Exclusion Rule}} \left(f(\eta^{x,x+z}) - f(\eta)\right).$$

• Diffusive scaling : $\times N^2$.

Model description ○ ○ ○ ○ ○ ○ Hydrodynamics

Continuous angle dynamic

イロト 不得 トイヨト イヨト 二日

Generator of the dynamic

$$L_{N} = N^{2} \mathcal{L}^{S} + \widehat{\lambda} N \mathcal{L}^{A} + \mathcal{L}^{G},$$

L^A : generator of the Asymmetric Simple Exclusion Process (WASEP)

$$\mathcal{L}^{\mathcal{A}}f(\eta) = \sum_{x \in \mathbb{T}_{N}} \sum_{\delta = \pm 1} \delta \eta_{x} \underbrace{(1 - |\eta_{x+\delta e_{1}}|)}_{\text{Exclusion Rule}} \left(f(\eta^{x,x+\delta e_{1}}) - f(\eta) \right),$$

• Ballistic scaling : ×N.

Model description ○ ○ ○ ○ ○ Hydrodynamics

Continuous angle dynamic

イロト 不得 トイヨト イヨト 二日

Generator of the dynamic

$$L_{N} = N^{2} \mathcal{L}^{S} + \widehat{\lambda} N \mathcal{L}^{A} + \mathcal{L}^{G},$$

• \mathcal{L}^{G} : generator of the Glauber alignment dynamics

$$\mathcal{L}^{G}f(\eta) = \sum_{x \in \mathbb{T}_{N}} c_{\beta}(x,\eta) |\eta_{x}| \left(f(\eta^{x}) - f(\eta)\right).$$

• No need for rescaling.

The complete generator and the initial state define a Markov process $(\eta(t))_{t \in [0,T]}$.

Model description 0 00000 Hydrodynamics

Continuous angle dynamic

・ロト ・ (目 ト ・ 目 ト ・ 日 -)

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamics

Main result Non-gradient hydrodynamics Irreducibility

Continuous angle dynamic Extension of the model

Hydrodynamics

Continuous angle dynamic

Heuristic formulation of the macroscopic limit

Theorem

Assumption : $\forall u \in [0, 1]^2$, $\rho_0(u) = \rho_0^+(u) + \rho_0^-(u) < 1$.

The **macroscopic density** of particles +, denoted $\rho^+(t, u)$, is solution **in a weak sense** of the reaction-diffusion equation

$$\partial_t \rho^+ = \nabla \cdot \left[d_s(\rho) \nabla \rho^+ + D(\rho^+, \rho) \nabla \rho \right] + 2 \widehat{\lambda} \partial_{x_1} \sigma(\rho^+, \rho) + \Gamma_\beta(\rho^+, \rho),$$

and

$$\rho^+(0, u) = \rho_0^+(u).$$

An analogous equation is verified by the – particle density ρ^- , and $\rho = \rho^+ + \rho^-$ is the total particle density.

Hydrodynamics

Continuous angle dynamic

Heuristic formulation of the macroscopic limit

Theorem

Assumption :
$$\forall u \in [0,1]^2$$
, $\rho_0(u) = \rho_0^+(u) + \rho_0^-(u) < 1$.

The **macroscopic density** of particles +, denoted $\rho^+(t, u)$, is solution **in a weak sense** of the reaction-diffusion equation

$$\partial_{t}\rho^{+} = \nabla \cdot \left[d_{s}(\rho) \nabla \rho^{+} + D(\rho^{+}, \rho) \nabla \rho \right] + 2 \widehat{\lambda} \partial_{x_{1}} \sigma(\rho^{+}, \rho) + \Gamma_{\beta}(\rho^{+}, \rho),$$

and

$$\rho^+(0,u) = \rho_0^+(u).$$

An analogous equation is verified by the – particle density ρ^- , and $\rho = \rho^+ + \rho^-$ is the total particle density.

Hydrodynamics

Continuous angle dynamic

Heuristic formulation of the macroscopic limit

Theorem

Assumption :
$$\forall u \in [0, 1]^2$$
, $\rho_0(u) = \rho_0^+(u) + \rho_0^-(u) < 1$.

The **macroscopic density** of particles +, denoted $\rho^+(t, u)$, is solution **in a weak sense** of the reaction-diffusion equation

$$\partial_t \rho^+ = \nabla \cdot \left[d_s(\rho) \nabla \rho^+ + D(\rho^+, \rho) \nabla \rho \right] + 2 \widehat{\lambda} \partial_{x_1} \sigma(\rho^+, \rho) + \Gamma_\beta(\rho^+, \rho),$$

and

$$\rho^+(0, u) = \rho_0^+(u).$$

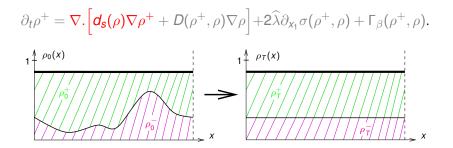
An analogous equation is verified by the - particle density ρ^- , and $\rho = \rho^+ + \rho^-$ is the total particle density.

Model description o ooooo Hydrodynamics

Continuous angle dynamic

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Dynamical interpretation

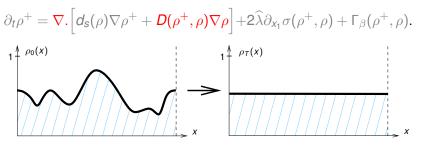


 d_s is the *self-diffusion coefficient* of a tracer particle in an homogeneous environment.

Model description 0 00000 Hydrodynamics

Continuous angle dynamic

Dynamical interpretation



The coefficient *D* quantifies the **diffusion** due to heterogeneities of the **total particle density**

$$D(\rho^+, \rho) = \frac{\rho^+}{\rho} (1 - d_s(\rho))$$
 (Quastel, 1992).

Model description 0 00000 Hydrodynamics

Continuous angle dynamic

イロト (同) (三) (三) (つ)

Dynamical interpretation

$$\partial_t \rho^+ = \nabla \cdot \left[d_{\mathsf{s}}(\rho) \nabla \rho^+ + D(\rho^+, \rho) \nabla \rho \right] + 2 \widehat{\lambda} \partial_{\mathsf{x}_1} \sigma(\rho^+, \rho) + \Gamma_\beta(\rho^+, \rho).$$

 \mapsto The drift σ can be expressed as

$$\sigma(\rho^+,\rho) = \frac{\rho^+}{\rho} (1-\rho-d_s(\rho))(\rho^+-\rho^-) + \rho^+d_s(\rho),$$

and is linked to D and d_s by the Stokes-Einstein relation.

Model description 0 00000 Hydrodynamics

Continuous angle dynamic

イロト 不得 トイヨト イヨト 二日

Dynamical interpretation

$$\partial_t \rho^+ = \nabla \cdot \left[d_{s}(\rho) \nabla \rho^+ + D(\rho^+, \rho) \nabla \rho \right] + 2 \widehat{\lambda} \partial_{x_1} \sigma(\rho^+, \rho) + \Gamma_{\beta}(\rho^+, \rho).$$

- Γ_{β} is the creation rate of "+" particles.
- It depends on the alignment jump rates c_{eta}

Model description

Hydrodynamics

Continuous angle dynamic

Hydrodynamic limit

Empirical measures

$$\pi_t^{+,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N^2} \eta_x^+(t) \delta_x, \quad \text{and} \quad \pi_t^{-,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N} \eta_x^-(t) \delta_x.$$

We want to prove $\pi_t^{+,N} \xrightarrow{\mathbb{P}} \pi_t^+ = \rho^+(t,x) dx$, i.e. that for any smooth *H*,

$$<\pi_t^{+,N},H> \rightarrow \int_{[0,1]^2} \rho^+(t,x)H(x)dx$$

Core principle :

$$<\pi_T^{+,N}, H>=<\pi_0^{+,N}, H>+\int_0^T L_N <\pi_t^{+,N}, H>dt+\widetilde{M_T^N}$$

Model description

Hydrodynamics

Continuous angle dynamic

Hydrodynamic limit

Empirical measures

$$\pi_t^{+,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N^2} \eta_x^+(t) \delta_x, \quad \text{and} \quad \pi_t^{-,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N} \eta_x^-(t) \delta_x.$$

We want to prove $\pi_t^{+,N} \xrightarrow{\mathbb{P}} \pi_t^+ = \rho^+(t,x) dx$, i.e. that for any smooth H,

$$<\pi_t^{+,N},H>\rightarrow\int_{[0,1]^2}
ho^+(t,x)H(x)dx$$

Core principle :

$$<\pi_{T}^{+,N}, H>=<\pi_{0}^{+,N}, H>+\int_{0}^{T}L_{N}<\pi_{t}^{+,N}, H>dt+\widetilde{M_{T}^{N}}$$

Model description 0 00000 Hydrodynamics

Continuous angle dynamic

Hydrodynamic limit

Empirical measures

$$\pi_t^{+,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N^2} \eta_x^+(t) \delta_x, \quad \text{and} \quad \pi_t^{-,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N} \eta_x^-(t) \delta_x.$$

We want to prove $\pi_t^{+,N} \xrightarrow{\mathbb{P}} \pi_t^+ = \rho^+(t,x) dx$, i.e. that for any smooth H,

$$<\pi_t^{+,N},H>\rightarrow\int_{[0,1]^2}
ho^+(t,x)H(x)dx$$

Core principle :

$$<\pi_{T}^{+,N},H>=<\pi_{0}^{+,N},H>+\int_{0}^{T}L_{N}<\pi_{t}^{+,N},H>dt+\overbrace{M_{T}^{N}}^{o_{N}(1)}$$

Model description

Hydrodynamics

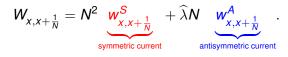
Continuous angle dynamic

Hydrodynamic limit

Assume we are in one dimension :

$$\begin{split} L_N < \pi_t^{+,N}, H > &= \frac{1}{N} \sum_{x \in \mathbb{T}_N} H(x) L_N \eta_x^+ \\ &= \frac{1}{N} \sum_{x \in \mathbb{T}_N} H(x) \left(W_{x - \frac{1}{N}, x} - W_{x, x + \frac{1}{N}} + \gamma_{\beta, x} \right) \\ &= \frac{1}{N} \sum_{x \in \mathbb{T}_N} \left[\left(H(x) - H\left(x + \frac{1}{N}\right) \right) W_{x, x + \frac{1}{N}} + H(x) \gamma_{\beta, x} \right] \end{split}$$

and the particle current can be written



Model description

Hydrodynamics

Continuous angle dynamic

Hydrodynamic limit

Assume we are in one dimension :

$$L_{N} < \pi_{t}^{+,N}, H > = \frac{1}{N} \sum_{x \in \mathbb{T}_{N}} H(x) L_{N} \eta_{x}^{+}$$

$$= \frac{1}{N} \sum_{x \in \mathbb{T}_{N}} H(x) \left(W_{x-\frac{1}{N},x} - W_{x,x+\frac{1}{N}} + \gamma_{\beta,x} \right)$$

$$= \frac{1}{N} \sum_{x \in \mathbb{T}_{N}} \left[\underbrace{\left(H(x) - H\left(x + \frac{1}{N}\right) \right)}_{\simeq \frac{1}{N} \partial_{u_{i}} H(x)} W_{x,x+\frac{1}{N}} + H(x) \gamma_{\beta,x} \right]$$

and the particle current can be written

$$W_{x,x+\frac{1}{N}} = N^2 \underbrace{w_{x,x+\frac{1}{N}}^{S}}_{\text{symmetric current}} + \widehat{\lambda}N \underbrace{w_{x,x+\frac{1}{N}}^{A}}_{\text{antisymmetric current}}.$$

Hydrodynamics

Continuous angle dynamic

Non-gradient hydrodynamics

- The partial derivative on *H* balances out a factor *N* in the current.
- In *non-gradient systems*, the symmetric current w^S_{x,x+¹/N} is not a discrete gradient.
 → the second integration by parts is not immediate
- One must prove

$$\boldsymbol{w}_{\boldsymbol{x},\boldsymbol{x}+\frac{1}{N}}^{S} \simeq \boldsymbol{D}(\eta_{\boldsymbol{x}}-\eta_{\boldsymbol{x}+1}) + \boldsymbol{d}_{\boldsymbol{s}}(\eta_{\boldsymbol{x}}^{+}-\eta_{\boldsymbol{x}+1}^{+}) + \mathcal{L}^{S}\boldsymbol{f}$$

Model description

Hydrodynamics

Continuous angle dynamic

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Out of equilibrium dynamics

Key issue

Comparison with a product measure on the discrete lattice :

- Distortion of the measure by the Glauber part and the initial configuration are easily controlled
- Distortion by the weak drift, harder to control

 \mapsto Challenge : prove that the exponential estimates needed in the *non-gradient* method still hold.

Model description o ooooo Hydrodynamics

Continuous angle dynamic

Out of equilibrium dynamics

Key issue

Comparison with a product measure on the discrete lattice :

- Distortion of the measure by the Glauber part and the initial configuration are easily controlled
- Distortion by the weak drift, harder to control

 \mapsto Challenge : prove that the exponential estimates needed in the *non-gradient* method still hold.

Continuous angle dynamic

Irreducibility

Exclusion rule : mixing is compromised in full clusters

- One must prove that the dynamics spreads enough empty sites to ensure mixing.
- This was a major issue with the model.
- The needed estimate is

$$\mathbb{E}\left(\frac{1}{N^2}\sum_{x\in\mathbb{T}_N}\mathbb{1}_{\text{Empty site in }\tau_xB_p}\right)\simeq\int_{[0,1]^2}dx\rho_x^{|B_p|}\xrightarrow[p\to\infty]{}0.$$
 (1)

▲□▶▲□▶▲□▶▲□▶ □ つく

Continuous angle dynamic

Irreducibility

Exclusion rule : mixing is compromised in full clusters

- One must prove that the dynamics spreads enough empty sites to ensure mixing.
- This was a major issue with the model.
- The needed estimate is

$$\mathbb{E}\left(\frac{1}{N^2}\sum_{x\in\mathbb{T}_N}\mathbb{1}_{\text{Empty site in }\tau_xB_p}\right)\simeq\int_{[0,1]^2}dx\rho_x^{|B_p|}\xrightarrow[p\to\infty]{}0.$$
 (1)

Hydrodynamics

Continuous angle dynamic

Irreducibility

Exclusion rule : mixing is compromised in full clusters

- One must prove that the dynamics spreads enough empty sites to ensure mixing.
- This was a major issue with the model.
- The needed estimate is

$$\mathbb{E}\left(\frac{1}{N^2}\sum_{x\in\mathbb{T}_N}\mathbb{1}_{\text{Empty site in }\tau_xB_p}\right)\simeq\int_{[0,1]^2}dx\rho_x^{|B_p|}\xrightarrow[p\to\infty]{}0.$$
 (1)

Model description o ooooo Hydrodynamics

Continuous angle dynamic

・ロト ・ (目 ト ・ 目 ト ・ 日 -)

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamics

Main result Non-gradient hydrodynamics Irreducibility

Continuous angle dynamic Extension of the model

Hydrodynamics

Continuous angle dynamic •o

(日本)(日本)(日本)(日本)(日本)

Continuous angle dynamic

Goal : extension of the model to a continuous type $heta \in [0, 2\pi[$

Theorem, continuous angles

The macroscopic density ρ^{θ} of particles with angle θ is solution in a weak sense of

$$\partial_t \rho^{\theta} = \frac{1}{2} \nabla \left[d_s(\rho) \nabla \rho^{\theta} + D(\rho^{\theta}, \rho) \nabla \rho \right] + \widehat{\lambda} \nabla \sigma(\rho^{\theta}, \rho) + \Gamma^{\theta}$$

- $\rho = \int_{\theta} \rho^{\theta} d\theta$ is the total particle density
- Γ^{θ} alignment term, continuous diffusion, jump process

Hydrodynamics

Continuous angle dynamic •o

イロト (同) (三) (三) (つ)

Continuous angle dynamic

Goal : extension of the model to a continuous type $\theta \in [0, 2\pi[$

Theorem, continuous angles

The macroscopic density ρ^{θ} of particles with angle θ is solution in a weak sense of

$$\partial_t \rho^{\theta} = \frac{1}{2} \nabla \left[\mathbf{d}_{\mathbf{s}}(\rho) \nabla \rho^{\theta} + \mathbf{D}(\rho^{\theta}, \rho) \nabla \rho \right] + \widehat{\lambda} \nabla \sigma(\rho^{\theta}, \rho) + \Gamma^{\theta}$$

- $\rho = \int_{\theta} \rho^{\theta} d\theta$ is the total particle density
- Γ^{θ} alignment term, continuous diffusion, jump process

Hydrodynamics

Continuous angle dynamic •o

イロト (同) (三) (三) (つ)

Continuous angle dynamic

Goal : extension of the model to a continuous type $\theta \in [0, 2\pi[$

Theorem, continuous angles

The macroscopic density ρ^{θ} of particles with angle θ is solution in a weak sense of

$$\partial_t \rho^{\theta} = \frac{1}{2} \nabla \left[\mathbf{d}_{\mathbf{s}}(\rho) \nabla \rho^{\theta} + \mathbf{D}(\rho^{\theta}, \rho) \nabla \rho \right] + \widehat{\lambda} \nabla \sigma(\rho^{\theta}, \rho) + \Gamma^{\theta}$$

- $\rho = \int_{\theta} \rho^{\theta} d\theta$ is the total particle density
- Γ^{θ} alignment term, continuous diffusion, jump process

Model description

Hydrodynamics

 $\underset{O \bullet}{\text{Continuous angle dynamic}}$

Thanks for your attention !

