

Faculty of Science

Fluid flow at porous liquid interfaces

Sören Dobberschütz Nano-Science Center, Copenhagen

09.03.2016 1/31

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions Planar Boundary Curved Boundar

Results

Motivation

· Porous medium inside of a fluid flow

• Interest: Fluid behaviour at the porous-liquid interface of a curved porous medium

Overview

YEP Eindhoven

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions Planar Boundary Curved Boundary

Results

Periodic Homogenization

Flow in Porous Media

 Boundary Conditions Planar Boundary Curved Boundary

A Results

The concept

YEP Eindhoven

S. Dobberschütz

Idea of periodic homogenization

Periodic Homogenization

Flow in Porous Media

Boundary Conditions Planar Boundary Curved Boundar

Results

Møns Klint

SEM image of chalk

2 different scales:

Macro-Scale

- Size of cm km
- Modelling is complicated
- Simulations are possible

Micro-Scale

- Size of nm mm
- Modelling is possible
- Simulations are complicated/impossible

Main interest:

How to get from the micro- to the macro-scale?

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions Planar Boundary Curved Boundary

Results

 Choose a sequence of scale-parameters ε > 0

Idea of periodic homogenization

• Fill the domain of interest with ε -scaled versions of a reference cell $Y = [0, 1)^n$

• ε fixed: Problem of the form

$$\mathcal{L}^{\varepsilon}u^{\varepsilon}=f$$

• We are looking for u^0 and \mathcal{L}^0 , such that $u^{\varepsilon} \longrightarrow u^0$ for $\varepsilon \to 0$ and

$$\mathcal{L}^0 u^0 = f$$

 $\mathcal{L}^{\varepsilon}, \mathcal{L}^{0}$: differential operators

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions Planar Boundary Curved Boundary

Results

Mathematical methods

Methods for deriving the limit equation:

Asymptotic expansion

$$u^{\varepsilon}(x) = u_0(x,y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y) + \dots |_{y=\frac{x}{\varepsilon}}$$

insert in equation; calculate u_0, u_1, \ldots

- Two-scale convergence
- Periodic Unfolding

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions Planar Boundary Curved Boundary

Results

• Incompressible free flow

Mathematical Description of Fluids

Small Reynolds number

$$-\mu \Delta u + \nabla p = f$$
$$\operatorname{div}(u) = 0$$

Darcy's law

- Incompressible free fluid in a porous medium
- Effective velocity

$$u = \frac{1}{\mu} K(f - \nabla p)$$
$$\operatorname{div}(u) = 0$$

Joseph

YEP Eindhoven

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary Curved Boundary

Results

The Boundary Condition of Beavers and

Only for straight interfaces

Beavers/Joseph '67

Velocity normal to Σ is continuous.

Velocity tangential to Σ has a jump:

$$(\mathbf{v}_{F} - \mathbf{v}_{D}) \cdot \mathbf{\tau}$$
$$= \frac{1}{a} \mathbf{K}^{\frac{1}{2}} (\nabla \mathbf{v}_{F} \mathbf{v}) \cdot \mathbf{\tau}$$

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary Curved Boundary

Results

$$-\Delta u^{\varepsilon} + \nabla p^{\varepsilon} = f \text{ in } \Omega^{\varepsilon}$$

div $u^{\varepsilon} = 0 \text{ in } \Omega^{\varepsilon}$
 $u^{\varepsilon} = 0 \text{ on } \partial \Omega^{\varepsilon} \setminus (\{x_1 = 0\} \cup \{x_1 = L\})$
 $u^{\varepsilon}, p^{\varepsilon} \text{ are } L\text{-periodic in } x_1$

 $f \in \mathcal{C}^{\infty}(\Omega)^2$, *L* periodic in x_1 .

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary Curved Boundary

Results

First approximations

Maciniak-Czochra/Mikelic (2012)

Impermeable interface approximation

 $-\Delta u^{0} + \nabla p^{0} = f \text{ in } \Omega_{1}$ div $u^{0} = 0 \text{ in } \Omega_{1}$ $u^{0} = 0 \text{ on } \partial \Omega_{1} \setminus (\{x_{1} = 0\} \cup \{x_{1} = L\})$ $u^{0}, p^{0} \text{ are } L$ -periodic in x_{1}

Porous approximation

div
$$(A(f - \nabla p^D)) = 0$$
 in Ω_2
 $p^D = p^0 + C_{\omega}^{bl} \frac{\partial u_1^0}{\partial x_2}(x_1, 0)$ on Σ
 $A(f - \nabla p^D) \cdot e_2 = 0$ on $\{x_2 = -K\}$
 p^D is *L*-periodic in x_1

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary

Results

 β^{bl}, ω^{bl} are 1-periodic in y_1

Exponential stabilization

Define $C_1^{bl} = \int_0^1 \beta_1^{bl}(y_1, 0) \, dy_1$, $C_{\omega}^{bl} = \int_0^1 \omega^{bl}(y_1, 0) \, dy_1$. Then $\exists C, \gamma_0 > 0$ such that

$$\begin{aligned} |\beta^{bl}(y_1, y_2) - (C_1^{bl}, 0)| &\leq Ce^{-\gamma_0 |y_2|} \\ |\omega^{bl}(y_1, y_2) - C_{\omega}^{bl}| &\leq Ce^{-\gamma_0 |y_2|} \end{aligned} \text{ in } Z^+ \quad \begin{aligned} |\beta^{bl}(y_1, y_2)| &\leq Ce^{-\gamma_0 |y_2|} \\ |\omega^{bl}(y_1, y_2)| &\leq Ce^{-\gamma_0 |y_2|} \end{aligned} \text{ in } Z^- \end{aligned}$$

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary

Results

Exponential stabilization

This leads to the estimates

$$\begin{split} \left\| \beta^{bl}(\frac{x}{\varepsilon}) - (C^{bl}, \mathbf{0}) H(x_2) \right\|_{L^2(\Omega)^2} &\leq C \varepsilon^{\frac{1}{2}} \\ \left| \omega^{bl}(\frac{x}{\varepsilon}) - C^{bl}_{\omega} H(x_2) \right\|_{L^2(\Omega)} + \left\| \nabla \beta^{bl} \right\|_{L^2(\Omega)^4} &\leq C \varepsilon^{\frac{1}{2}} \end{split}$$

 β^{bl}, ω^{bl} are 1-periodic in y_1

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary Curved Boundary

Results

Numerical Simulations

(from Jäger, Mikelic, Neuss 2001)

- β_1^{bl} , β_2^{bl} decay to 0 in Z^-
- β_2^{bl} decays to 0 in Z^+
- $egin{smallmatrix} eta_1^{bl} \mbox{ decays to} \ C_1^{bl} < 0 \mbox{ in } Z^+ \ \end{split}$

Jäger/Mikelic (1996)

YEP Eindhoven

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary Curved Boundary

Results

Auxiliary Problem: Counterflow

 $-\Delta u^{\sigma} + \nabla \pi^{\sigma} = 0$ in Ω_1 $\operatorname{div}(u^{\sigma}) = 0$ in Ω_1 $u^{\sigma} = 0 \text{ on } (0, L) \times \{h\}$ $u^{\sigma} = e_1$ on Σ u^{σ}, π^{σ} are *L*-periodic in x_1

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary Curved Boundary

Results

Idea of the Proof

Jäger/Maciniak-Czochra/Mikelic

$$\begin{split} u^{\varepsilon}(x) &\approx u^{0}(x) - \varepsilon \Big(\beta^{bl}(\frac{x}{\varepsilon}) - (C_{1}^{bl}, 0)H(x_{2})\Big)\frac{\partial u_{1}^{0}}{\partial x_{2}}(x_{1}, 0) \\ &- \varepsilon C_{1}^{bl}\frac{\partial u_{1}^{0}}{\partial x_{2}}(x_{1}, 0) \cdot u^{\sigma}(x) + \mathcal{O}(\varepsilon^{2}) \\ p^{\varepsilon}(x) &\approx p^{0}(x)H(x_{2}) + p^{D}(x)H(-x_{2}) - \Big(\omega^{bl}(\frac{x}{\varepsilon}) - H(x_{2})C_{\omega}^{bl}\Big)\frac{\partial u_{1}^{0}}{\partial x_{2}}(x_{1}, 0) \\ &- \varepsilon C_{1}^{bl}\frac{\partial u_{1}^{0}}{\partial x_{2}}(x_{1}, 0) \cdot \pi^{\sigma}H(x_{2}) + \mathcal{O}(\varepsilon) \end{split}$$

On Σ:

$$\frac{u_1^{\varepsilon}}{\varepsilon} = -\beta_1^{bl}(\frac{x_1}{\varepsilon}, 0)\frac{\partial u_1^0}{\partial x_2}(x_1, 0) + \mathcal{O}(\varepsilon)$$

Averaging the right hand side, we expect the following effective behaviour

$$u_1^{\rm eff} = -\varepsilon C_1^{bl} \frac{\partial u_1^{\rm eff}}{\partial x_2}(x_1, 0)$$

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary Curved Boundary

Results

Effective Fluid Behaviour

Maciniak-Czochra/Mikelic (2012)

$$\begin{aligned} -\Delta u^{\text{eff}} + \nabla p^{\text{eff}} &= f \text{ in } \Omega_1 \\ \text{div } u^{\text{eff}} &= 0 \text{ in } \Omega_1 \\ \int_{\Omega_1} p^{\text{eff}} \, dx &= 0 \\ u^{\text{eff}} &= 0 \text{ on } (0, L) \times \{h\} \\ u_2^{\text{eff}} &= 0 \quad u_1^{\text{eff}} + \varepsilon C_1^{b/} \frac{\partial u_1^{\text{eff}}}{\partial x_2} &= 0 \text{ on } \Sigma \\ u^{\text{eff}}, p^{\text{eff}} \text{ are } L\text{-periodic in } x_1 \end{aligned} \qquad \begin{aligned} \text{div}(A(f - \nabla \tilde{p}^{\text{eff}})) &= 0 \text{ in } \Omega_2 \\ \tilde{p}^{\text{eff}} &= p^{\text{eff}} + C_{\omega}^{b/} \frac{\partial u_1^{\text{eff}}}{\partial x_2}(x_1, 0) \text{ on } \Sigma \\ A(f - \nabla \tilde{p}^{\text{eff}})|_{\{x_2 = -K\}} \cdot e_2 &= 0 \\ \tilde{p}^{\text{eff}} \text{ is } L\text{-periodic in } x_1 \end{aligned}$$

Main estimates

$$\begin{split} \|u^{\varepsilon} - u^{\text{eff}}\|_{L^{2}(\Omega_{1})^{2}} &\leq C\varepsilon^{\frac{3}{2}}, \qquad p^{\varepsilon} \longrightarrow \tilde{p}^{\text{eff}} \text{ strongly in } L^{2}(\Omega_{2}) \\ \|u^{\varepsilon} - u^{\text{eff}}\|_{H^{\frac{1}{2}}(\Omega_{1})^{2}} + \|p^{\varepsilon} - p^{\text{eff}}\|_{L^{1}(\Omega_{1})} + \|\nabla(u^{\varepsilon} - u^{\text{eff}})\|_{L^{1}(\Omega_{1})} &\leq C\varepsilon \\ \frac{1}{\varepsilon^{2}}u^{\varepsilon} - A(f - \nabla \tilde{p}^{\text{eff}}) \longrightarrow 0 \text{ in } L^{2}((0, L) \times (-K, -\delta)) \forall \delta > 0 \end{split}$$

Coordinate Transformation

 $g \in \mathcal{C}^{\infty}(\mathbb{R})$ *L*-periodic: Function describing the interface $\tilde{\Sigma}$

$$\psi: \Omega \longrightarrow \tilde{\Omega}$$

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \longmapsto \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 + g(z_1) \end{pmatrix}$$

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary

Curved Boundary

Results

Transformed Differential Operators

F – Jacobian matrix of the transformation ψ

$$F(z) = \begin{bmatrix} 1 & 0 \\ g'(z_1) & 1 \end{bmatrix}$$

Denote coordinates in $\tilde{\Omega}$ by $x = (x_1, x_2)$, in Ω by $z = (z_1, z_2)$

Lemma (Transformation Rules)

Let $\tilde{c}: \tilde{\Omega} \longrightarrow \mathbb{R}$, $\tilde{j}: \tilde{\Omega} \longrightarrow \mathbb{R}^2$ be sufficiently smooth. Define $c(z) := \tilde{c}(\psi(z))$ and $j(z) := \tilde{j}(\psi(z))$, then

• $\nabla_{\mathbf{x}} \, \tilde{\mathbf{c}} = \mathbf{F}^{-T} \, \nabla_{\mathbf{z}} \, \mathbf{c}$

•
$$\operatorname{div}_{x}(\tilde{j}) = \operatorname{div}_{z}(F^{-1}j)$$

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary

Curved Boundary

Results

Transformed Stokes-Equation

$$-\operatorname{div}(F^{-1}F^{-T}\nabla u^{\varepsilon}) + F^{-T}\nabla p^{\varepsilon} = f$$
$$\operatorname{div}(F^{-1}u^{\varepsilon}) = 0$$
$$u^{\varepsilon} = 0$$

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Curved Boundary

Results

Transformed Stokes-Equation

$-\operatorname{div}(F^{-1}F^{-T}\nabla u^{\varepsilon})+F^{-T}\nabla p^{\varepsilon}=f$	in Ω_2^{ϵ}
$\operatorname{div}(F^{-1}u^{\varepsilon})=0$	in Ω_2^{ϵ}
$u^{arepsilon}=0$	on ∂Ω²₂

Theorem (Transformed Darcy's law)

It holds $\frac{u^{\epsilon}}{\epsilon^2} \longrightarrow u_0$ in $L^2(\Omega_2)^2$, $p^{\epsilon} \longrightarrow p_0$ in $L^2(\Omega_2)$ with

$$\begin{aligned} u_0 &= A(f - F^{-T} \nabla p_0) & \text{ in } \Omega_2 \\ \operatorname{div}(F^{-1}u_0) &= 0 & \text{ in } \Omega_2 \\ u_0 \cdot F^{-T}v &= 0 & \text{ on } \partial \Omega_2 \end{aligned} \qquad A_{ij}(x) = \int_Y w_j^i(x,y) \, \mathrm{d}y \in \mathbb{R}^{2 \times 2} \end{aligned}$$

Parameter dependent cell problem

$$-\operatorname{div}_{y}(F^{-1}(x)F^{-T}(x)\nabla_{y}w^{i}(x,y)) + F^{-T}(x)\nabla_{y}\pi^{i}(x,y) = e_{i} \quad \text{in } Y^{*}$$

$$\operatorname{div}_{y}(F^{-1}(x)w^{i}(x,y)) = 0 \quad \text{in } Y^{*}$$

$$w^{i}(x,\cdot),\pi^{i}(x,\cdot)$$
 are Y-periodic in $y,$ $w^{i}(x,y)=0$ in Y_{S}

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary

Curved Boundary

Results

$\begin{aligned} -\operatorname{div}(F^{-1}F^{-T}\nabla u^{\varepsilon}) + F^{-T}\nabla p^{\varepsilon} &= f \quad \text{in } \Omega^{\varepsilon} \\ \operatorname{div}(F^{-1}u^{\varepsilon}) &= 0 \quad \text{in } \Omega^{\varepsilon} \\ u^{\varepsilon} &= 0 \quad \text{on } \partial\Omega^{\varepsilon} \setminus (\{x_{1} = 0\} \cup \{x_{1} = L\} \\ u^{\varepsilon}, p^{\varepsilon} \text{ are } L \text{-periodic in } x_{1} \end{aligned}$

Transformed Stokes-Equation

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary Curved Boundary

Results

First Approximations

Impermeable interface approximation

$$\begin{aligned} -\operatorname{div}(F^{-1}F^{-T}\nabla u^0)+F^{-T}\nabla p^0&=f \text{ in }\Omega_1\\ \operatorname{div}(F^{-1}u^0)&=0 \text{ in }\Omega_1\\ u^0&=0 \text{ on }\partial\Omega_1\backslash(\{x_1=0\}\cup\{x_1=L\})\\ u^0,p^0 \text{ are }L\text{-periodic in }x_1\end{aligned}$$

Porous approximation

div
$$(F^{-1}A(f - F^{-T} \nabla p^D)) = 0$$
 in Ω_2
 $p^D = p^0 + C_{\omega}^{b/}$ on Σ
 $A(f - F^{-T} \nabla p^D) \cdot e_2 = 0$ on $\{x_2 = -K\}$
 $\tilde{\pi}^0$ is *L*-periodic in x_1

YEP Eindhoven Auxiliary Problem: Boundary Layer S. Dobberschütz $-\operatorname{div}_{\mathsf{v}}(\mathsf{F}^{-1}(x)\mathsf{F}^{-T}(x)\nabla_{\mathsf{v}}\beta^{bl}(x,y)) + \mathsf{F}^{-T}(x)\nabla_{\mathsf{v}}\omega^{bl}(x,y) = 0$ in $\Omega \times Z$ $\operatorname{div}_{V}(F^{-1}(x)\beta^{bl}(x,y)) = 0$ in $\Omega \times Z$ 7+ $[\beta^{bl}(x)]_{\varsigma}(y) = 0$ on $0 \times S$ Boundary $[(F^{-1}(x)F^{-T}(x)\nabla_{y}\beta^{bl}(x) - F^{-1}(x)\omega^{bl}(x))e_{2}]_{S}(y)$ Curved Boundary $= F^{-1}(x)F^{-T}(x) \nabla u^{0}(x_{1},0)e_{2} \quad \text{on } \Omega \times S$ $\beta^{bl}(x,y) = 0$ on $\Omega \times \bigcup_{k=1}^{\infty} \{\partial Y_{s} - {0 \choose k}\}$ Z $\beta^{bl}(x), \omega^{bl}(x)$ are 1-periodic in y_1

Exponential stabilization

 $\begin{array}{ll} \text{Define } \mathcal{C}^{bl}(x_1) = \int_0^1 \beta^{bl}(x_1, y_1, 0) \ \text{d}y_1, \ \mathcal{C}^{bl}_{\omega}(x_1) = \int_0^1 \omega^{bl}(x_1, y_1, 0) \ \text{d}y_1. \ \text{Then} \\ \exists \mathsf{C}, \mathsf{\gamma}_0 > 0 \ \text{such that} & \text{in } \mathcal{Z}^+ & \text{in } \mathcal{Z}^- \\ & |\beta^{bl}(x_1, y_1, y_2) - \mathcal{C}^{bl}(x_1)| \le \mathsf{C} e^{-\mathsf{\gamma}_0|\mathsf{y}_2|} & |\beta^{bl}(x_1, y_1, y_2)| \le \mathsf{C} e^{-\mathsf{\gamma}_0|\mathsf{y}_2|} \\ & |\omega^{bl}(x_1, y_1, y_2) - \mathcal{C}^{bl}_{\omega}(x_1)| \le \mathsf{C} e^{-\mathsf{\gamma}_0|\mathsf{y}_2|} & |\omega^{bl}(x_1, y_1, y_2)| \le \mathsf{C} e^{-\mathsf{\gamma}_0|\mathsf{y}_2|} \end{array}$

Exponential stabilization

This leads to the estimates

$$\begin{split} \|\beta^{bl}(\mathbf{x},\frac{\mathbf{x}}{\varepsilon}) - C^{bl}(\mathbf{x}_{1})H(\mathbf{x}_{2})\|_{L^{2}(\Omega)^{2}} + \|\omega^{bl}(\mathbf{x},\frac{\mathbf{x}}{\varepsilon}) - C^{bl}_{\omega}(\mathbf{x}_{1})H(\mathbf{x}_{2})\|_{L^{2}(\Omega)} + \|\nabla_{\mathbf{y}}\beta^{bl}(\mathbf{x},\frac{\mathbf{x}}{\varepsilon})\|_{L^{2}(\Omega)^{4}} \\ + \|\nabla_{\mathbf{x}}(\beta^{bl}(\mathbf{x},\frac{\mathbf{x}}{\varepsilon}) - C^{bl}(\mathbf{x}_{1})H(\mathbf{x}_{2}))\|_{L^{2}(\Omega)^{4}} + \|\operatorname{div}_{\mathbf{x}}(F^{-1}F^{-T}\nabla_{\mathbf{y}}\beta^{bl}(\mathbf{x},\frac{\mathbf{x}}{\varepsilon}))\|_{L^{2}(\Omega)^{2}} \leq C\varepsilon^{\frac{1}{2}} \end{split}$$

YEP Eindhoven S. Dobberschütz

Auxiliary Problem: Counterflow

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary

Curved Boundary

Results

Counterflow

$$\begin{aligned} -\operatorname{div}(F^{-1}(x)F^{-T}(x) \nabla u^{\sigma}(x)) + F^{-T}(x) \nabla \pi^{\sigma}(x) &= 0 \quad \text{ in } \Omega_1 \\ \operatorname{div}(F^{-1}(x)u^{\sigma}(x)) &= 0 \quad \text{ in } \Omega_1 \\ u^{\sigma}(x_1, 0) &= C^{bl}(x_1) \quad \text{ on } \Sigma \\ u^{\sigma} &= 0 \quad \text{ on } (0, L) \times \{h\} \\ u^{\sigma}, \pi^{\sigma} \text{ are } L \text{-periodic in } x_1 \end{aligned}$$

Idea of the proof

YEP Eindhoven

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions Planar Boundary

Curved Bounda

Results

$$\begin{split} u^{\varepsilon}(x) &\approx u^{0}(x) - \varepsilon \Big(\beta^{bl}(x,\frac{x}{\varepsilon}) - C^{bl}H(x_{2})\Big) + \varepsilon u^{\sigma}(x) + \mathcal{O}(\varepsilon^{2}) \\ p^{\varepsilon}(x) &\approx p^{0}(x)H(x_{2}) + p^{D}(x)H(-x_{2}) - \Big(\omega^{bl}(x,\frac{x}{\varepsilon}) - H(x_{2})C_{\omega}^{bl}\Big) \\ &- \varepsilon \pi^{\sigma}H(x_{2}) + \mathcal{O}(\varepsilon) \end{split}$$

- Insert in weak formulation
- Ontrol the errors
- **BUT**
 - Divergence free test functions required

S. Dobberschütz

- Periodic Homogenization
- Flow in Porous Media
- Boundary Conditions
- Planar Boundary
- Curved Boundary

Results

Effective Fluid Behaviour

$$-\operatorname{div}(F^{-1}F^{-T} \nabla u^{\text{eff}}) + F^{-T} \nabla p^{\text{eff}} = f \text{ in } \Omega_1$$

$$\operatorname{div}(F^{-1}u^{\text{eff}}) = 0 \text{ in } \Omega_1$$

$$\int_{\Omega_1} p^{\text{eff}} dx = 0$$

$$u^{\text{eff}} = 0 \text{ on } (0, L) \times \{h\}$$

$$u^{\text{eff}} + \varepsilon C^{b'} = 0 \text{ on } \Sigma$$

$$u^{\text{eff}}, p^{\text{eff}} \text{ are } L\text{-periodic in } x_1$$

$$\operatorname{div}(A(f - F^{-T} \nabla \tilde{p}^{\text{eff}})) = 0 \text{ in } \Omega_2$$

$$\tilde{p}^{\text{eff}} = p^{\text{eff}} + C^{b'}_{\omega} \text{ on } \Sigma$$

$$A(f - F^{-T} \nabla \tilde{p}^{\text{eff}})|_{\{x_2 = -K\}} \cdot e_2 = 0$$

$$\tilde{p}^{\text{eff}} \text{ is } L\text{-periodic in } x_1$$

Main estimates

$$p^{\varepsilon} \longrightarrow \tilde{p}^{0} \text{ strongly in } L^{2}(\Omega_{2}), \quad \|u^{\varepsilon} - u^{\text{eff}}\|_{L^{2}(\Omega_{1})^{2}} \leq C\varepsilon^{\frac{3}{2}}$$
$$\|u^{\varepsilon} - u^{\text{eff}}\|_{H^{\frac{1}{2}}(\Omega_{1})^{2}} + \|p^{\varepsilon} - p^{\text{eff}}\|_{L^{1}(\Omega_{1})} + \|\nabla(u^{\varepsilon} - u^{\text{eff}})\|_{L^{1}(\Omega_{1})} \leq C\varepsilon$$
$$\frac{1}{\varepsilon^{2}}u^{\varepsilon} - A(f - F^{T}\nabla\tilde{p}^{0}) \longrightarrow 0 \text{ in } L^{2}((0, L) \times (-K, -\delta))\forall \delta > 0$$
$$\frac{1}{\varepsilon}(u^{\varepsilon} - u^{\text{eff}}) \longrightarrow 0 \text{ in } L^{2}(\Sigma)$$

Conclusions

YEP Eindhoven

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions

Planar Boundary

Curved Boundary

Results

- BC of Beavers-Joseph-Saffman for periodically curved interfaces
- Geometry of the interface influences boundary condition

Questions:

- How to obtain local information for non-periodic geometry
- Numerical simulations

S. Dobberschütz

Periodic Homogenization

Flow in Porous Media

Boundary Conditions Planar Boundary Curved Boundary

Results

Thank you for your attention!

S. Dobberschütz:

Effective behavior of a free fluid in contact with a flow in a curved porous medium.

SIAM J. Appl. Math. 75 (2015)

S. Dobberschütz:

On the Beavers-Joseph-Saffman boundary condition for curved interfaces.

arXiv 1504.05680

A. Marciniak-Czochra, A. Mikelic:

Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization. Multiscale Mod. Simul. 10 (2012)

S. Dobberschütz

Cell Problem and Parameter-Dependent PDEs S. Dobberschütz

For fixed $x \in \Omega$, solve

$$-\operatorname{div}_{y}(F^{-1}(x)F^{-T}(x)\nabla_{y}w^{i}(x,y))+F^{-T}(x)\nabla_{y}\pi^{i}(x,y)=f(x) \quad \text{ in } Y^{*}$$

 $\operatorname{div}_{V}(F^{-1}(x)w^{i}(x,y)) = \mathbf{0}$ in Y*

> $w^i(x,y) = 0$ in Y_s

 $w^{i}(x, \cdot), \pi^{i}(x, \cdot)$ are Y-periodic in y

Properties with respect to x?

Cell Problem and Parameter-Dependent PDEs S Dobberschütz

Construct an operator

$$\begin{aligned} \mathcal{A} : \mathbb{R}^{2} \times [H_{0,\#}^{1}(Y^{*})^{2} \times L_{\#}^{2}(Y^{*})/\mathbb{R}] &\longrightarrow (H_{0,\#}^{1}(Y^{*})^{2})' \times L_{0,\#}^{2}(Y^{*}) \\ \mathcal{A}(x, u, p) := \begin{pmatrix} -\operatorname{div}_{y} (F^{-1}(x)F^{-T}(x)\nabla_{y} u) + F^{-T}(x)\nabla_{y} p - f(x) \\ \operatorname{div}_{y} (F^{-1}(x)u) \end{pmatrix} \end{aligned}$$

Lemma

 \mathcal{A} is continuous, the total derivative $D_{\mu\nu}\mathcal{A}$ is continuous, and $(D_{up}\mathcal{A}(x, u, p))^{-1}$ exists as a continuous linear operator.

S. Dobberschütz

Cell Problem and Parameter-Dependent PDEs

Implicit Function Theorem for Banach spaces can be applied:

Proposition

Assume that *F* is *m*-times continuously differentiable and that $f \in C^m(\Omega, L^2_{\#}(Y^*))$.

Then the solution (u, p) of $\mathcal{A}(x, u, p) = 0$ is in

$$\mathcal{C}^{m}(\Omega, [H^{1}_{0,\#}(Y^{*})^{2} \times L^{2}_{\#}(Y^{*})/\mathbb{R}]),$$

i.e. u(x, y) and p(x, y) are *m*-times differentiable in *x*.

S. Dobberschütz

Cell Problem and Parameter-Dependent PDEs

Implicit Function Theorem for Banach spaces can be applied:

Proposition

Assume that *F* is *m*-times continuously differentiable and that $f \in C^m(\Omega, L^2_{\#}(Y^*))$.

Then the solution (u, p) of $\mathcal{A}(x, u, p) = 0$ is in

$$\mathcal{C}^{m}(\Omega, [H^{1}_{0,\#}(Y^{*})^{2} \times L^{2}_{\#}(Y^{*})/\mathbb{R}]),$$

i.e. u(x, y) and p(x, y) are *m*-times differentiable in *x*.

Explicit formula for derivatives

$$D_{x}(u,p)(x) = -D_{up}\mathcal{A}(x,u(x),p(x))^{-1} \circ D_{x}\mathcal{A}(x,u(x),p(x))$$

 $\rightsquigarrow \partial_{x_1}(u,p)$ and $\partial_{x_2}(u,p)$ fulfill transformed Stokes equation in Y^* , with adjusted right hand sides

