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Decision making under uncertainty:
data-driven modeling
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Decision making under uncertainty

It is well known that for many decision problems under uncertainty,
the multistage formulation of a decision problem outperforms a
repeated myopic single- or two-stage approach. Examples of such
problems include

I Portfolio optimization

I Asset-liability management

I Pension fund management

I Managing energy portfolios (production and trading)

I Hydrostorage management (turbining and pumping)

I Transportation and logistics

I Supply Chains and inventory control
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Scenario processes

For appropriate modeling, we need time series data, such as

I Portfolio optimization: asset prices, option prices

I Asset-liability managment: liability processes

I Pension fund management: Retirement process and mortality
of customers

I Energy portfolios: spot prices, future prices, fuel prices,
demand patterns

I Hydrostorage management: in�ows, spot prices, pumping
prices, demands

I Transportation and logistics: transportation costs, demands

I Supply Chains and inventory Control: inventory holding costs,
order costs, demands
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The problem formulation

We consider a multistage stochastic optimization problem of the
form

Opt(P) : v∗(P) = min{RP[Q(x , ξ)] : x � F;P ∼ (Ω,F,P, ξ)}
(1)

where Ω is a probability space, F is a �ltration on Ω, i.e. an
increasing sequence of sigma-algebras

F = (F0 = (Ω, ∅),F1, . . . ,FT = 2Ω), (2)

ξ = (ξ0, . . . , ξT ) is a stochastic scenario process adapted to the
�ltration F (in symbol ξ � F). The notation Q(x , ξ) is a short form
of

Q(x , ξ) = Q(x0, ξ1, x1, ξ2, . . . , ξT , xT ).

R is a risk functional.
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Discretizations

While in reality many scenario processes evolve in continuous time
and continuous space, the numerical treatment requires to
discretize time and space. The appropriate discretized object is a
scenario tree.

0 1 2 3 4 5

−8

−6

−4

−2

0

2

4

6

8

We solve the multistage decision problem on a tree.

Georg Ch. P�ug Decision making under uncertainty: data-driven modeling



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Trees represent discrete stochastic processes

�����:
0.4

5 ω1 P(ω1) = 0.2

XXXXXz
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6 ω2 P(ω2) = 0.3

-1 7 ω3 P(ω3) = 0.3

�����*
0.4 8 ω4 P(ω4) = 0.08

-0.2 9 ω5 P(ω5) = 0.04HHHHHj
0.4

10 ω6 P(ω6) = 0.08

�
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2

�����:
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ZZ~
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4

1

N0 N1 N2, the sample space

An exemplary �nite tree process with nodes N = {1, . . . 10} and
leaves N2 = {5, . . . 10} at T = 2 stages. The �ltrations, generated
by the respective atoms, are F2 = σ ({ω1}, {ω2}, . . . {ω6}),
F1 = σ ({ω1, ω2} , {ω3} , {ω4, ω5, ω6}) and
F0 = σ ({ω1, ω2, . . . ω6})Georg Ch. P�ug Decision making under uncertainty: data-driven modeling
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Approximations

approximate problem
(Õpt)

original problem
(Opt)

x̃∗,
the solution of (Õpt)

extension function
x+ = eX(x̃

∗)

x∗, the solution of (Opt)
x∗ ∼ x+, the approximate

solution

?

-

-

6

6

solution

numerical

solution

approximation

extension
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From data to tree models

data

choice of
parametric model

parameter estimation

simulation of
(conditional) distributions

tree generation
by (optimal) quantization

data

simulation of
(conditional) distributions
based on density estimates

tree generation by
(optimal) quantization

?

?

?

?

?

?

The parametric (left) and the nonparametric approach (right)
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Illustration: In�ow data
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0
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7 Reservoir 1
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6
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6 Reservoir 2
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x 10
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Weeks(10−30)

m
3 /w

ee
k

 Reservoir 6

Alternatives:

I parametric way: Identify a SARMA(1, 2), (2, 2)52 model with
normal errors and estimate all parameters

I nonparametric way: Find the optimal discretizations based on
conditional density estimates
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The Wasserstein distance (Monge's transportation dis-
tance)

Let (Ξ, d) be a metric space, typically Rm, let P1(Ξ, d) be the
family probability measures P on (Ξ, d) such that

ˆ
d(u, u0) dP(z) < ∞

for some u0 ∈ Ξ.
P1 is a complete separable metric space under the
Wasserstein/Kantorovich transportation distance d1:

d1(P1,P2) = sup{|
ˆ

f (u) dP1(u)−
ˆ

f (u) dP2(u)| :

|f (u)− f (v)| ≤ d(u, v)}

Here the supremum is over all Lipschitz(1) functions w.r.t the basic
distance d .
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The Kantorovich-Rubinstein Theorem

Theorem.

d1(P1,P2) = inf{E(d(X ,Y ) : (X ,Y ) is a bivariate r.v. with

given marginal distributions P1 and P2}.
A generalization of the Kantorovich distance is the Wasserstein
distance of order r

drr (P1,P2) = inf{E(d(X ,Y )r : (X ,Y ) is a bivariate r.v. with

given marginal distributions P1 and P2}.

d r
r (P1,P2) = inf

π

¨
Ξ×Ξ̃

d(x , y)rπ(dx , dy),

where π is a probability measure with given marginals P1 and P2,

π
(
A× Ξ

)
= P1

(
A
)
and

π
(
Ξ× B

)
= P2

(
B
)
.

The in�mum is attained. The minimizer π is called the optimal

transportation plan.
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Interpretation as facility location/mass transportation
problem

−6 −4 −2 0 2 4 6
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Distance = 0.4

If both probabilities are discrete, then the calculation of the
Wasserstein distance is a linear program.
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Optimal quantization

Ideally one would like to solve

min{dr (P, P̃s).P̃s sits on at most s points}

This optimal facility location problem is a NP-hard problem, but
can anyway be solved by stochastic (quasi-) gradient methods (at
least to local optimality). An often used alternative, is to take just
take a random sample from the probability distribution P , but ...

0 0.2 0.4 0.6 0.8 1
0

0.1
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0 0.2 0.4 0.6 0.8 1
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0.7

0.8

0.9

1

Left: A MC sample form the Uniform[0, 1]2 distribution
Right: A nearly optimal discretization form the same distribution
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The approximation quality of Monte Carlo sampling

Let P̂s be the empirical distribution based on a sample of size s
from the underlying distribution P . Then, for any square integrable
function f .

|
ˆ

f (u) dP̂s(u)−
ˆ

f (u) dP(u)| = OP(s
−1/2)

irrespective of the dimension m of the sample space Ξ ⊆ Rm. This
formula is however not uniform in f . To the contrary: If uniformity
in f is required, strong conditions on the uniformity set F have to
be imposed.
Theorem. (Talagrand,1994)

P{sup
f ∈F

|
ˆ

f (u) dP̂s(u)−
ˆ

f (u) dP(u)| ≥ M·s−1/2} ≤ C

M

(
M2

V

)v

e−2M2

where F is a family of functions which can be covered by at most
(V /ϵ)v balls of radius ϵ.
The family Lip(1) is not of �nite covering type.
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Large deviations

Theorem. (Graf and Luschgy, 2000) Let P have density g in Rm.
Then

lim
s→∞

P{s1/md1(P , P̂s) > t} =

ˆ
(1− exp(−tmbmg(u))g(u) du.

where bm = 2πm/2

mΓ(m/2) .

Theorem. (Boley, Guilin and Villani, 2007). Let P be a measure
on Rm endowed with metric d . Suppose that there is an α > 0
such that

´
exp(αd2(u, 0)))P(du) < ∞. Then there is a λ > 0

and a s0 > 0 such that for all m′ > m and s ≥ s0max(ϵ−m′−2, 1)

P{d1(P̂s ,P) ≥ ϵ} ≤ exp(−λ′

2
sϵ2).
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The approximation quality of optimal discretizations

Theorem. (Zador, 1982) Let P̃s be the optimal discretization with
s points of P, Then

lim
s→∞

s1/md1(P, P̃s) = ∥g∥m/(m+1) inf s
1/md1(U[0, 1]m, Ũs).

Bounds are known for the latter constant.
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The �exibility of the Wasserstein distance

The basic distance d on (Ξ, d) determines the set of Lipschitz(1)
functions and therefore the optimal discretization.
Example: Nearly optimal discretization of a t(2) distribution:
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d(u, v) = |u − v | d(u, v) = |u5 − v5|
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Monte Carlo versus (nearly) optimal quantization

A Lipschitz function f (u1, . . . , um) was considered in [0, 1]m and its
integral was calculated using Monte Carlo and optimal
discretization. Not only the function f was considered, but also
permuted versions fσ = f (uσ(1), . . . , uσ(m)) for 120 permutations σ.
Ideally, all estimated integrals should be the same. The Monte
Carlo estimates are not uniform w.r.t. the functions fσ, while the
optimal discretization leads to uniform approximations. Left: MC
values for the functions fσ, Right: integrations using the nearly
optimal discretizations for all fσ.
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Multistage generalization: the nested distance

De�nition. Let (Ξ, d) be a metric space (typically Ξ ⊆ Rm) and
let

P :=
(
Ξ, (Σt)t=0,...T ,P

)
and P̃ :=

(
Ξ, (Σ̃t)t=0,...T , P̃

)
be �ltered probability spaces.
De�nition. (G.P. 2009, G.P., A. Pichler 2014) The nested distance

of order r ≥ 1 is

dlr (P, P̃)r = inf
π

¨
Ξ×Ξ̃

d(x , y)rπ(dx , dy),

where π is a probability measure with conditional marginals P and
P̃, i.e.,

π
(
A× Ξ|Σt ⊗ Σ̃t

)
= P

(
A|Σt

)
and

π
(
Ξ× B|Σt ⊗ Σ̃t

)
= P̃

(
B| Σ̃t

)
for all t = 0, . . .T ,

where A ∈ ΣT and B ∈ Σ̃T .
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Transportation distance between stochastic processes
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Examples of nested distances

P(1): tree 1 P(2): tree 2 P(3): tree 3

dl(P(1),P(2)) = 3.90

dl(P(1),P(3)) = 2.52

dl(P(2),P(3)) = 3.79
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Nested distance ̸= Multivariate Wasserstein Distance

0 1 2
0.5

1

1.5

2

2.5

3

3.5

0 1 2
0.5

1

1.5

2

2.5

3

3.5

P(A): tree A P(B): tree B

dl(P(A),P(B)) = 0.525; d(P(A),P(B)) = 0.05
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Stochastic optimization problems are continuous w.r.t.
the nested distance

Theorem. (A. Pichler, G.P. 2009)
Let P :=

(
Ξ, (Σt)t=0,...T ,P

)
(P̃ :=

(
Ξ̃, (Σ̃t)t=0,...T , P̃

)
, resp.) be a

�ltered probability space. Consider the multistage stochastic
optimization problem

v(P) := inf {EPQ(ξ, x) : x � Σ} ,

where Q is convex in x for any ξ �xed, and Lipschitz with constant
L in ξ for any x �xed. Then∣∣∣v(P)− v(P̃)

∣∣∣ ≤ L · dr (P, P̃)

for every r ≥ 1.
The constraint x � Σ is shorthand for xt � Σt for all t = 1, . . .T ,
where x = (xt)

T
t=1

is the stochastic decision process: x must be
adapted to Σ, i.e. nonanticipative.
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The scenario generation problem

Out of a (discrete time) scenario process ξ = (ξ0, . . . , ξT ) with
deterministic ξ0

we want to make a �nite scenario tree ξ̃ = (ξ̃0, . . . , ξ̃T )
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From data to tree models

The empirical measure of the i.i.d time series observations

ξ1 = (ξ1,1, . . . ξT ,1)

. . .

ξn = (ξ1,n, . . . ξT ,n)

is P̂n := 1

n

∑n
i=1

δξi =
1

n

∑n
i=1

δ(ξ1,i ,...ξT ,i ) on Rm, where each
ξi = (ξ1,i , . . . ξT ,i ) is an observation of an entire sample path. The
empirical measure is a special case of a discrete measure.
Discrete measures are dense w. r. t. the Wasserstein distance in
the space of measures satisfying an adequate moment constraint
(Bolley, 2008). Under the same conditions, the empirical measure
converges a.s. to the true one.
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Smoothing is necessary

Notice that the empirical process based on n trajectories can be
graphically represented by a "fan", a non-branching tree. The
empirical process on RmT converges (under a moment condition)
a.s. in the multivariate Wasserstein distance to the underlying
distribution, but not in the nested distribution. For the convergence
of the conditional distributions some smoothing is necessary.

Georg Ch. P�ug Decision making under uncertainty: data-driven modeling



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conditional density estimation

In order to describe conditional density estimation suppose that X
is the main variable (in Rmx ) of interest and ξ represents all
conditioning variables (in Rmξ). Then the kernel estimate for the
conditional density based on a sample (Xi , ξi ) is given by

f̂n(x |ξ) =
n∑

i=1

1

h
mξ
ξ

k
(
ξ−ξi
hξ

)
∑n

j=1

1

h
mξ
ξ

k
(
ξ−ξj
hξ

) · 1

hmx
x

k

(
x − Xi

hx

)

where (hx , hξ) are the respective bandwidths (Parzen-Rosenblatt
estimator). This estimator can be rewritten as

f̂n(x |ξ) =
n∑

i=1

wi (ξ) · khx (x − Xi ), where wi (ξ) :=
k
(
ξ−ξi
hξ

)
∑n

j=1
k
(
ξ−ξj
hξ

)
are the weights corresponding to the partial observation Xi .
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Density estimation and Wasserstein distance

Lemma. For a translation invariant distance d it holds that

dr (P̃ ∗ kh, P) ≤ dr (P̃,P) + κ
1/r
r · h,

where κr =
´
∥x∥r k(x)dx is the r th-absolute moment of the kernel

k .
Theorem. Let P be a measure on Rm with density f . Suppose the
kernel is Lipschitz with constant ∥k∥Lip and supported in the unit

ball, {k(·) > 0} ⊆ {∥·∥ ≤ 1}. Then the kernel density estimator f̂n
corresponding to P̂n ∗ khn satis�es∥∥∥f̂n − f

∥∥∥
∞

≤ δf (h) +
∥k∥Lip
hm+1

dr (P , P̂n)

for every r ≥ 1. Here δf (h) := sup{∥x−y∥≤h} |f (x)− f (y)| is the
modulus of continuity of the density f . (see Bolley et al. 2007).
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The main result

Theorem. Introduce the notation ξ0:t := (ξ0, . . . ξt) for a
substring of (ξ0, . . . ξT ). Suppose that

1. the conditions of the previous two Theorems hold, and

2. the measure P is conditionally Lipschitz, i.e.,

d
(
P(·|ξ0:t), P(·|ξ̃0:t)

)
≤ κt ·

∥∥∥ξ0:t − ξ̃0:t

∥∥∥.
Then the nested distance of the �ltered spaces

Pn =
(
Ξ, (Σt)t=0,...T , P̂n ∗ khn

)
equipped with the convolution

measure P̂n ∗ khn converges in probability to
P = (Ξ, (Σt)t=0,...T ,P), i.e.,

P
(
dl
(
P, Pn

)
> ε

)
→ 0

as n → ∞.
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Generating trees

The tree generator algorithm we propose is based on a sample
(ξi ,1, . . . , ξi ,T ), i = 1, . . . , n. One replaces the probability
distribution at the �rst stage t = 1 by the discrete measure∑bt

i=1
piδξi,1 . This can be accomplished based on optimal

quantizers, cf. Graf and Luschgy or by algorithms outlined in P�ug
and Pichler (2014a, 2014b). Recursively, given that the tree is
already established for t stages, each path (ξ̃1, . . . ξ̃t) from the tree
already constructed is being considered again. The conditional
distribution is estimated from the samples by

f (xt+1| ξ̃1, . . . ξ̃t) ∼ f̂n(xt+1| ξ̃1, . . . ξ̃t),

This distribution is again approximated by a discrete probability
measure. The parameters T (the desired height of the tree) and let
(b1, . . . , bT ) the bushiness parameters per stage have to be chosen
in advance.
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The Algorithm

I Determining the root. The value of the process at the root is ξ̃0
(deterministic). Its stage is 0. Set the root as the current open node.

I Successor generation. Enumerate the tree stagewise from the root to the

leaves.

1. Let ℓ be the node to be considered next and let t < T be its

stage. Let ξ̃0, ξ̃1, . . . ξ̃t be the already �xed values at node ℓ
and all its predecessors. Find an approximation of the form∑bt

i=1
piδx (i) , which is close in the Wasserstein distance to the

distribution with density

f (xt+1| ξ̃0, . . . ξ̃t) ∼ f̂n(xt+1| ξ̃0, . . . ξ̃t).

2. Store the bt successor nodes and assign to the tree the values

ξ̃(n1) = x (1), . . . , ξ̃(nbt ) = x (nbt ) as well as their conditional
probabilities q(ni ) = pi in the new tree.

I Stopping Criterion. If all nodes at stage T − 1 have been considered as
parent nodes, the generation of the tree is �nished.
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Example: Markovian process
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1000 sample paths from a Gaussian random walk and a binary tree
of height 12 with 4095 nodes approximating it.
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Examples: Non-Markovian process
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1000 sample paths from a non-Markovian maximum process and a
tree approximating it.
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Example: Tree reduction

This example considers a tree as a starting process. The �gure
below left depicts a tree process with 1 237 nodes. Based on 10.000
samples we used our Algorithm to approximate the initial tree by a
smaller one. Notice that a tree process does not have a density.
Nevertheless, the algorithm still is able to approximate the initial
tree and perform a tree reduction.
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Model uncertainty: ambiguity

Traditionally, optimal decision making under uncertainty is done
two steps:

I Step 1: Estimation of a probability model for the random
scenarios

I Step 2: Finding the best decision given the estimated model

According to Ellsberg (1961) we face here two types of
non-determinism:
Uncertainty: the probabilistic model is known, but the realizations
of the random variables are unknown ("aleatoric uncertainty")
Ambiguity: the probability model itself is not fully known
("epistemic uncertainty").
Ambiguity sets P: A family of probability models P which are all
plausible models for the reality and we are uncertain about which
concrete P ∈ P is the true one.
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Problem formulation: Ambiguity

Let the basic problem be

min
{
EP̂ [Q(x , ξ)] : x ∈ X

}
and let P be the ambiguity set. Then the ambiguity problem is

min {max {EP [Q(x , ξ)] : P ∈ P } : x ∈ X} .

Find the pair of optimal decision x∗ ∈ X which is
good for all models P ∈ P , among which there is

a worst case model P∗ ∈ P .
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The pair (x∗,P∗) forms a saddle point
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A saddle point (symbolic picture)
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Statistical estimation and con�dence sets

I The ambiguity set P must re�ect our current information
about P

I If our information is based on statistical estimation, the
ambiguity set must coincide with a con�dence set

I by getting more or �ner information, the ambiguity set may be
reduced.
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A simple portfolio optimization problem

(ξ1, . . . , ξM) random returns for M asset categories
(x1, . . . , xM) portfolio weights

Yx =
∑M

m=1
xmξm portfolio return

U(Yx) acceptability/utility functional∥∥∥∥∥∥∥∥
Maximize (in x) : UP(Yx)
subject to
x⊤1l = 1
x ≥ 0
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Equal weights is maximin for large ambiguity

With this insight, we may prove a remarkable result for distortion
functionals:

lim
K→∞

argmax {
∑

xi=1,xi≥0} min
dr (P,P̂)≤K

UP(Yx) =
1

M
1l.

Under large ambiguity, the optimal decision is the "equal weights"
allocation.
The same result holds for the Markovitz model, if the distance is d2.
Distortion utility functional: U(Y ) =

´
1

0
FY (p)h(p) dp

Average value-at-risk: AV@R(Y ) = 1

α

´ α
0
FY (p) dp
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Ambiguity in Copula

Suppose that an optimal portfolio problem, the marginal returns Fi
are known and �xed and only the copula is unknown. We want to
solve

max
x

min
C

{U(
∑
i

xiξi ) :
∑
i

xi = 1, ξi = F−1

i (Ui ), (U1, . . . ,Ud) ∼ C}

where U is a comonotone additive utility functional (e.g. a
distortion functional like the the AV@R).
Then the minimax solution is

I C ∗ is the Fréchet upper bound (maxumal comonotonicity).

I x∗ selects one single asset with has maximal individual utility

Completely di�erent from the case with unknown marginals!
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Multistage ambiguous models: balls in nested distance

As before, a baseline problem

min
{
RP̂[Q (x , ξ)] : x ∈ X, x � F; P = (F,P , ξ)

}
where the probability model is given by the nested distribution P is
extended to the ambiguous model

min
x

max
P

{
RP[Q(x , ξ)] : x ∈ X, x � F̂; P = (F̂,P, ξ); dlr (P̂,P) ≤ ε

}
.

min

{
max
P∈P

RP̂[Q (x , ξ)] : x ∈ X, x � F; P = (F,P , ξ)

}
In multistage models, we replace the Wasserstein distance by the
nested distance dl for scenario trees and consider as ambiguity set
the nested ball

P = Br (P̂, ε) =
{
P : P = (F̂,P , ξ); dlr (P̂,P) ≤ ε

}
.

Georg Ch. P�ug Decision making under uncertainty: data-driven modeling



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The sequential algorithm

1. Set n = 0 and P0 = {P̂} with P̂ ∈ P .

2. Solve the outer problem.

min
x

max
P∈Pn

{
RP[Q(x , ξ)] : x ∈ X, x � F̂; P = (F̂,P, ξ)

}
.

and call the solution xn.

3. Solve the inner problem.

max
P∈P

{RP[Q(xn, ξ)]}

to �nd the worse case tree Pn+1. This can be accomplished by
solving T linear problems, where T is the depth of the tree.

4. Set Pn+1 = Pn ∪ Pn+1 and goto [2. ] or stop.
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Price of Ambiguity and Reward for Robustness

Let P̂ be the baseline model and let x∗(P) be the optimal solution
of the baseline problem. Likewise, let P be the ambiguity set and
let x∗(P) be the solution of the minimax problem. Under
convex-concavity, the solution x∗(P) of the minimax problem
together with the worst case model P∗ form a saddle point, meaning
that the following inequality is valid for all feasible x and all P ∈ P

EP[Q(x∗(P), ξ)] ≤ EP∗ [Q(x∗(P), ξ)] ≤ EP∗ [Q(x , ξ)].

Let us call EP∗ [Q(x∗(P), ξ)] the minimax value.
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De�ne:

I The Price of Ambiguity.

EP̂[Q(x∗(P), ξ)]− EP̂[Q(x∗(P̂), ξ)] ≥ 0.

"How much do I loose by implementing the minimax strategy
x∗(P) instead of the best strategy for the baseline model, if in
fact the baseline model is true?"

I Reward for robust decisions.

EP∗ [Q(x∗(P), ξ)]− EP∗ [Q(x∗(P), ξ)] ≥ 0.

"How much do I gain, when I implement the minimax strategy
x∗(P) instead of the best strategy for the baseline model, if in
fact the worst case model is true?"
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Management of a hydrosystem in the Austrian Alps

The scenario process consist of 5 components:
Spot prices, Pumping prices, In�ows for 3 reservoirs. Statistical
model selection methods were used to �nd that the in�ows can be
represented by a 3-dimensional SARMA(1, 2), (2, 2)52 process,
while the spot and pumping prices can be modeled by an
independent process, a superposition of an additive error model
based on forward prices and a spike generating process.
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The decision model

maximize

λE[xcT ]− (1− λ)AV@R1−α[−xcT ]
subject to

0 ≤ x ft,i ≤ x fi ,
x sj ≤ x st,j ≤ x sj ,
x ,send,j ≤ x sT ,j ,

x st,j = x st−1,j + ξft,j +
∑

{i∈I |Pmax>0} Ai,j · x ft−1,i +
∑

{i∈I |Pmax=0} Ai,j · x ft,i ,
xet,i = x ft−1,i · k i · △t(t−1),

xct = xct−1
· (1+ r)△t(t−1) +

∑
{i∈I |k i>0} xet−1,i · ξet +

∑
{i∈I |k i<0} x it−1,i · ξ

p
t .
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Generating a scenario tree

We generate a scenario tree in a way that the nested distance
between the scenario process and the scenario tree is as small as
possible.

Number of stages 8

Minimal bushiness per stage 2,2,2,1,1,1,1,1

Maximal distance per stage 5,5,5,7,7,7,10,10
Number of scenarios (leaves) 392

Number of nodes 1532
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The typical picture: The larger is the ambiguity radius, the simpler
is the worst case tree.
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The minimax decisions: They get more complicated with increasing
ambiguity radius: Decisions lying on bounds are avoided.

Price of ambiguity: 2.3%.
Reward for robustness: 7.5%.
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Conclusions

I Multistage stochastic programs need approximation
techniques. We showed how the approximation error can be
controlled.

I The way from data to models can be parametric or
nonparametric

I In order to capture both: scenario uncertainty (aleatoric
uncertainty) and probability ambiguity (epistemic uncertainty)
we use a probabilistic maximin approach

I The ambiguity neighborhood should be chosen in such a way
that it corresponds to statistical con�dence regions for which
bounds for the covering probability are available.

I Bounds may be used if instead of approximations, if the
original problems is quite di�cult to solve.
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Lower and upper bounds

Often the problem is computationally such complex, that it is
advisable to �nd quick bounds than to calculate the exact solution.
If a feasible solution is found, for which the objective value can only
be 1% (say) larger than a valid lower bound, then one may stop
and avoid cumbersome calculations for a possible minor e�ect.
The general principle of bounding is the following:
Lower bounds can be found by relaxation of constraints or by
�nding minorants of the objective function (e.g. by Jensen's
inequality)
Upper bounds can be found by inserting feasible solutions or by
�nding majorants of the objective function (e.g. by
Edmundson-Madansky inequality).
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Lower bounds by changing the probability measure

These classes of lower bounds are based on the following
observation:
If the functional P 7−→ RP(·) is concave (i.e. the mapping
P 7→ RP(Y ) is concave for all random variables Y for which R is
de�ned), then the mapping P 7→ v∗(P) is also concave.
Consequently, if P =

∑
i wiPi , then∑
i

wiv
∗(Pi ) ≤ v∗(P).
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Re�nement Chains

While the dissection of P into its atoms (δωi ) is the most extreme
dissection, one may also dissect it into a convex combination of
probabilities sitting on two ore more, but not all leaves. We may
consider dissections of P into a convex combination of probabilities,
all of them sitting on j scenarios. These probabilities need not to
sit on disjoint sets, to the contrary, all of them may contain f �xed
scenarios.
If a re�ning sequence of dissections of P can be found, then a
monotonic sequence of lower bounds can be found.
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A re�nement chain is of the structure

Ω

(Ω
(ℓ)
1
,Ω

(ℓ)
2
, . . . ,Ω

(ℓ)
mℓ)

...

(Ω
(2)
1

,Ω
(2)
2

, . . . ,Ω
(2)
m2

)

({ω1}, {ω2}, . . . , {ωk})

where each row is a collection of subsets of the probability space Ω
with the property that their union covers the whole space

Ω = ∪iΩ
(j)
i for all j and that each set Ω

(j+1)
i is the union of sets

from the next more re�ned collection

Ω
(j)
i = ∪

Ω
(j−1)
s ⊆Ω

(j)
i

Ω
(j−1)
s .
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To a re�nement chain of the probability space Ω there corresponds
a chain of dissections of the probability P into probability measures

P
(j)
i

P

(P
(ℓ)
1

, . . .P
(ℓ)
mℓ )

... (3)

(P
(2)
1

, . . . ,P
(2)
m2

)

(P
(1)
1

= δω1 , . . . ,P
(1)
k = δωk

)

such that

(i) P
(j)
i has support Ω

(j)
i

(ii) P can be written as P =
∑mj

i=1
π
(j)
i P

(j)
i

(iii) each P
(j)
i can be written as a convex combination of

probabilities from the re�ned collection
{
P
(j−1)
i

}
.

It is evident that given such a re�nement chain leads to a chain of
lower bounds.
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Case study: a multistage inventory problem

Random demands have to be satis�ed from an inventory. If the
demand exceeds the stock, it will be satis�ed by rapid orders from a
di�erent source, which come at a higher price. At each time step
(stage), orders can be placed, and they will be delivered one period
later. The objective is to minimize the expected disutility of the
total costs where pro�ts are considered as negative costs. Demands
are the only random quantities in the model, all �nancial quantities
are assumed to be already discounted to the present.
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Computational results

We consider the inventory model using the random demands s
modeled as the scenario tree below. It has 540 scenarios and 806
nodes. The full stochastic problem is composed by 4304 scalar
variables and 2693 constraints.

0 1 2 3 4 5
30

40

50

60

70

80

90

100

110

Scenario tree structure generated on the basis of an
time-inhomogeneous exponential auto-regressive AR(1) model,
with demand values ξt , t = 0, . . . , 5 represented on the y -axis.
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Re�nement chain with disjoint subsets (f = 0)

j # subproblems s Objective v. CPU s. per subpr.

1 540 v∗
1

= −2198.81 0.066
5 108 v∗

5
= −2193.31 0.0705

20 27 v∗
20

= −2162.65 0.0825
60 9 v∗

60
= −2138.17 0.108

180 3 v∗
180

= −2114.67 0.176
540 1 v∗ = −2096.66 0.31
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Upper bounds

Comparison between the stochastic, the expected value solution
and upper bounds by inserting (sub)solutions for the multistage
inventory problem (k = 540 scenarios).

problem type x0 Objective v. CPU s.

v∗(PE(ξ)) (lower b.) 61.4188 −2199.70 0.01

v∗(P) 63.8405 −2096.66 0.31
EEV 1 = v∗(P, x̄0:0) 61.4188 −2095.67 0.10
EEV 2 = v∗(P, x̄0:1) 61.4188 −2093.35 0.12
EEV 3 = v∗(P, x̄0:2) 61.4188 −2083.58 0.29
EEV 4 = v∗(P, x̄0:3) 61.4188 −2071.34 0.26
EEV 5 = v∗(P, x̄0:4) 61.4188 −2061.03 0.28
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The upper approximation P̄
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A very large problem

We generated a tree with 725760 scenarios and 1262417 nodes.
This problem could not be solved by our solver, but the lower
bound approximation was possible.

j # subprob. Objective v. CPUs/subprob.total CPUs.

8 90720 v∗
8

=−3967.61 0.0287 2612.29
56 12960 v∗

56
=−3941.06 0.0539 698.71

336 2160 v∗
336

=−3921.15 0.1990 430.011
2016 360 v∗

2016
=−3902.77 0.9385 337.89

10080 72 v∗
10080

=−3884.23 5.4852 394.94
40320 18 v∗

40320
=−3869.42 27.4512 494.123

120960 6 v∗
120960

=−3857.06 166.5516 999.31
362880 2 v∗

362880
=−3842.61 1274.424 2548.848
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