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What is a paradox?

A statement or proposition that seems self-contradictory
or absurd but in reality expresses a possible truth.
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Jevons Paradox

In economics, the Jevons paradox occurs when
technological progress increases the efficiency with which

a resource is used (reducing the amount necessary for any
one use), but the rate of consumption of that resource
rises because of increasing demand.
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Jevons Paradox

Single server queue

The server increases the service rate

He believes:

more will join

waiting time will be reduced

he will have more free time

In fact:

more will join

no change in waiting times

he will work more, not less
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The basic queueing model (M/M/1)

single server

first come first served (FCFS)

Poisson arrival rate λ

exponential service rate µ > λ (mean of 1
µ
)

value of service R

cost per unit of wait C
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Some facts

mean service time 1/µ
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Some facts

mean service time 1/µ

utilization level ρ = λ/µ < 1

mean time in the system

W =
1

µ(1− ρ)

mean time from an arrival until first server idleness

1

µ(1− ρ)2

equals the total added time to the society due to the marginal arrival
equals the mean time in the system for a stand-by customer

Example: assume λ = 0.9 and 1/µ = 1
⇒ ρ = 0.9
⇒ mean time in the system 10
⇒ mean socially added time 100 (for 1 unit of service!)
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To queue or not to queue Edleson and Hildebrand, ‘75

assume

R −
C

µ
> 0 and R −

C

µ(1− ρ)
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if nobody joins, one better join. If all join, one better do not join
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To queue or not to queue Edleson and Hildebrand, ‘75

assume

R −
C

µ
> 0 and R −

C

µ(1− ρ)
< 0

if nobody joins, one better join. If all join, one better do not join

(Nash) equilibrium: join with probability pe where

R −
C

µ(1− peρ)
= 0

In equilibrium, all are indifferent between joining or not
They all end up with zero

In case µ increases

utility is added to nobody: all are still left with zero

the server works more, not less: peρ goes up with µ
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social optimization: join with probability ps where

ps = arg max
0<p<pe

pλ(R −
C

µ(1− pρ)
)

R −
C

µ(1− psρ)2
= 0

In social optimization, the society is indifferent whether the marginal
customer joins or not

those who do not join, end with nothing

those who join, gain something

In case µ increases:

more join, λps = µ−
√

Cµ/R

social utility goes up, (
√
Rµ−

√
C )2

those who join wait less,
√

R/(Cµ)

the server works more, not less, psρ = 1−
√

C/(µR)
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The Downs-Thomson paradox

commuters have the option to drive to work or to take the bus

the more who opt for driving, the longer driving takes

the more who opt for the bus, the shorter is the ride

assume that all using one of the options (any), is not an equilibrium

in equilibrium,

some drive, the rest take the bus
both options come with the same amount of time
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The Downs-Thomson paradox

suppose the road capacity is increased

in the new equilibrium, more drive, less take the bus (still identical
times)

since fewer use the bus now, the longer it takes

hence, the longer is driving as well

all are worse off

Social optimization: no roads at all, only buses (or only roads with
huge capacity)
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A cab or driving a car Alimeimounga, Solomon & Ziedins, ’05

driving a car: an M/M/1 model. If λ use it, it takes 1/(µ − λ).
µ > λ and µ the road capacity

The cab leaves when the 7th arrives

Unobservable. No regrets

Poisson arrivals, rate Λ

Assume:

µ > Λ/3: otherwise, all using the bus is an equilibrium

µ < Λ: otherwise, all driving is an equilibrium

Equilibrium: peΛ use the bus where pe obeys

3

peΛ
=

1

µ− (1− pe)Λ

pe decreases with µ but 3/(peΛ) increases in µ
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The prisoner’s dilemma

A B

A (2,2) (0,3)

B (3,0) (1,1)

(A,A) is socially optimal

(A,A) is not an equilibrium

(B ,B) is the unique equilibrium

action B is a dominant action (for both)

Suppose both A and B exist. Better having someone (government,
dictator, regulator) who will remove option B .

Suppose the status-quo was only A. An inventor comes with another
option, B .

if I was the only one who could enjoy it, great for me (and who cares
about the others)

if all can use it, we are all worse off
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4000 commuters

Start End

A

B

t =

N

100 t =
45

t =
45

t =

N

100

Equilibrium: 2000 go in each route
Social optimization: same behavior

Individual cost 65. Social cost 65× 4000 = 260, 000

An individual who switches losses from the switch

For others, some win, some lose. The absolute changes coincide, but there
are more losers than winners. This is more so when additional switches
occur

77 / 102



New network

Start End

A

B

t =

N

100 t =
45

t =
45

t =

N

100

78 / 102



New network

Start End

A

B

t =

N

100 t =
45

t =
45

t =

N

100

If only one could use the bridge, he would gain ≈ 45− 40 = 5.

79 / 102



New network

Start End

A

B

t =

N

100 t =
45

t =
45

t =

N

100

If only one could use the bridge, he would gain ≈ 45− 40 = 5.

Equilibrium: All use the bridge
Social optimization: 500 use bridge, 1750 use original routes each

80 / 102



New network

Start End

A

B

t =

N

100 t =
45

t =
45

t =

N

100

If only one could use the bridge, he would gain ≈ 45− 40 = 5.

Equilibrium: All use the bridge
Social optimization: 500 use bridge, 1750 use original routes each

Equilibrium: individual cost 80. Social cost 80× 4000 = 320, 000
Social optimization: 500 suffer 45 < 65, 3500 suffer 67.5 > 65

81 / 102



New network

Start End

A

B

t =

N

100 t =
45

t =
45

t =

N

100

If only one could use the bridge, he would gain ≈ 45− 40 = 5.

Equilibrium: All use the bridge
Social optimization: 500 use bridge, 1750 use original routes each

Equilibrium: individual cost 80. Social cost 80× 4000 = 320, 000
Social optimization: 500 suffer 45 < 65, 3500 suffer 67.5 > 65

Social cost in social optimality:
500× 45 + 3500 × 67.5 = 258, 750 < 260, 000 < 320, 000

82 / 102



New network

Start End

A

B

t =

N

100 t =
45

t =
45

t =

N

100

If only one could use the bridge, he would gain ≈ 45− 40 = 5.

Equilibrium: All use the bridge
Social optimization: 500 use bridge, 1750 use original routes each

Equilibrium: individual cost 80. Social cost 80× 4000 = 320, 000
Social optimization: 500 suffer 45 < 65, 3500 suffer 67.5 > 65

Social cost in social optimality:
500× 45 + 3500 × 67.5 = 258, 750 < 260, 000 < 320, 000

Price of Anarchy (PoA):

320, 000

258, 750
≈

5

4
<

4

3
(theoretical bound)
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The model:
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On average, we wait more than average

The model:

2n customers seek service in one out of two servers

all need to show up before 9:00am

at each server, random order of service (no early birds)

service lasts one minute

unobservable: each selects the server randomly

Q: What is the mean queueing time?

A: Uniform between 0 and n? (n − 1)/2?? No!

A: Correct above by O(
√
n)? ‘inspection paradox’? ‘length bias’? No!

A: (n − 1)/2 + 1/4?? Yes!

Anti-paradoxically, the error is not a function of n and
equals (only) a quarter of a service time
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Proof

“Proof” 1:

n + O(
√
n)

2n

n + O(
√
n)

2
+

n − O(
√
n)

2n

n − O(
√
n)

2
=

n

2
+ O1/

√
n

Proof 2: Tag a customer

(2n − 1)/2 others are expected in each line

(2n − 1)/4 = (n − 1)/2 + 1/4 services ahead
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Proof 2: Tag a customer

(2n − 1)/2 others are expected in each line

(2n − 1)/4 = (n − 1)/2 + 1/4 services ahead

Proof 3:
X ∼ Bin(2n, 1/2)

Mean queueing time:

E(
X

2n

X − 1

2
+

2n − X

2n

2n − X − 1

2
) =

n − 1

2
+

1

4
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Some facts

The equilibrium arrival rate: λe = µ− C
R

The socially optimal arrival rate: λs = µ−
√

Cµ

R

Either rate is not a function of the (high) potential rate

λs < λe ⇒ long queues

The consumer surplus is zero in equilibrium.
It is (

√
Rµ−

√
C )2 in social optimization

No gain in equilibrium from extra service capacity.
A gain under social optimization

102 / 102


