Queueing Paradoxes

Moshe Haviv

Department of Statistics and Center for the Study of Rationality The Hebrew University of Jerusalem

Eindhoven 2016

A statement or proposition that **seems** self-contradictory or absurd but in reality expresses a possible truth.

In economics, the Jevons paradox occurs when technological progress increases the efficiency with which a resource is used (reducing the amount necessary for any one use), but the rate of consumption of that resource rises because of increasing demand.

Jevons Paradox

Single server queue

The server increases the service rate

The server increases the service rate

The server increases the service rate

He believes:

• more will join

The server increases the service rate

- more will join
- waiting time will be reduced

The server increases the service rate

- more will join
- waiting time will be reduced
- he will have more free time

The server increases the service rate

- more will join
- waiting time will be reduced
- he will have more free time

The server increases the service rate

He believes:

- more will join
- waiting time will be reduced
- he will have more free time

In fact:

• more will join

The server increases the service rate

He believes:

- more will join
- waiting time will be reduced
- he will have more free time

In fact:

- more will join
- no change in waiting times

The server increases the service rate

He believes:

- more will join
- waiting time will be reduced
- he will have more free time

In fact:

- more will join
- no change in waiting times
- he will work more, not less

• single server

- single server
- first come first served (FCFS)

- single server
- first come first served (FCFS)
- Poisson arrival rate λ

- single server
- first come first served (FCFS)
- Poisson arrival rate λ
- exponential service rate $\mu > \lambda$ (mean of $\frac{1}{\mu}$)

- single server
- first come first served (FCFS)
- Poisson arrival rate λ
- exponential service rate $\mu > \lambda$ (mean of $\frac{1}{\mu}$)
- value of service R

- single server
- first come first served (FCFS)
- Poisson arrival rate λ
- exponential service rate $\mu > \lambda$ (mean of $\frac{1}{\mu}$)
- value of service R
- cost per unit of wait C

ullet mean service time $1/\mu$

- $\bullet\,$ mean service time $1/\mu$
- \bullet utilization level $\rho=\lambda/\mu<1$

- $\bullet\,$ mean service time $1/\mu\,$
- \bullet utilization level $\rho=\lambda/\mu<1$
- mean time in the system

$$W=rac{1}{\mu(1-
ho)}$$

- ullet mean service time $1/\mu$
- \bullet utilization level $\rho=\lambda/\mu<1$
- mean time in the system

$$W=rac{1}{\mu(1-
ho)}$$

• mean time from an arrival until first server idleness

$$\frac{1}{\mu(1-\rho)^2}$$

- ullet mean service time $1/\mu$
- \bullet utilization level $\rho=\lambda/\mu<1$
- mean time in the system

$$W=rac{1}{\mu(1-
ho)}$$

• mean time from an arrival until first server idleness

$$\frac{1}{\mu(1-\rho)^2}$$

• equals the total added time to the society due to the marginal arrival

- $\bullet\,$ mean service time $1/\mu$
- \bullet utilization level $\rho=\lambda/\mu<1$
- mean time in the system

$$W=rac{1}{\mu(1-
ho)}$$

• mean time from an arrival until first server idleness

$$\frac{1}{\mu(1-\rho)^2}$$

- equals the total added time to the society due to the marginal arrival
- equals the mean time in the system for a stand-by customer

- $\bullet\,$ mean service time $1/\mu$
- \bullet utilization level $\rho=\lambda/\mu<1$
- mean time in the system

$$W=rac{1}{\mu(1-
ho)}$$

• mean time from an arrival until first server idleness

$$\frac{1}{\mu(1-\rho)^2}$$

- equals the total added time to the society due to the marginal arrival
- equals the mean time in the system for a stand-by customer

- $\bullet\,$ mean service time $1/\mu$
- \bullet utilization level $\rho=\lambda/\mu<1$
- mean time in the system

$$W=rac{1}{\mu(1-
ho)}$$

• mean time from an arrival until first server idleness

$$\frac{1}{\mu(1-\rho)^2}$$

- equals the total added time to the society due to the marginal arrival
- equals the mean time in the system for a stand-by customer

Example: assume $\lambda = 0.9$ and $1/\mu = 1$ $\Rightarrow \rho = 0.9$

- \Rightarrow mean time in the system 10
- \Rightarrow mean socially added time 100 (for 1 unit of service!)

$$R-rac{\mathcal{C}}{\mu}>0$$
 and $R-rac{\mathcal{C}}{\mu(1-
ho)}<0$

if nobody joins, one better join. If all join, one better do not join

$$R-rac{\mathcal{C}}{\mu}>0$$
 and $R-rac{\mathcal{C}}{\mu(1-
ho)}<0$

if nobody joins, one better join. If all join, one better do not join

(Nash) equilibrium: join with probability p_e where

$$R - \frac{C}{\mu(1 - p_e \rho)} = 0$$

In equilibrium, all are indifferent between joining or not They all end up with zero

$$R-rac{\mathcal{C}}{\mu}>0$$
 and $R-rac{\mathcal{C}}{\mu(1-
ho)}<0$

if nobody joins, one better join. If all join, one better do not join

(Nash) equilibrium: join with probability p_e where

$$R - \frac{C}{\mu(1 - p_e \rho)} = 0$$

In equilibrium, all are indifferent between joining or not They all end up with zero

In case μ increases

$$R-rac{\mathcal{C}}{\mu}>0$$
 and $R-rac{\mathcal{C}}{\mu(1-
ho)}<0$

if nobody joins, one better join. If all join, one better do not join

(Nash) equilibrium: join with probability p_e where

$$R - \frac{C}{\mu(1 - p_e \rho)} = 0$$

In equilibrium, all are indifferent between joining or not They all end up with zero

In case μ increases

• utility is added to nobody: all are still left with zero

$$R-rac{\mathcal{C}}{\mu}>0$$
 and $R-rac{\mathcal{C}}{\mu(1-
ho)}<0$

if nobody joins, one better join. If all join, one better do not join

(Nash) equilibrium: join with probability pe where

$$R - \frac{C}{\mu(1 - p_e \rho)} = 0$$

In equilibrium, all are indifferent between joining or not They all end up with zero

In case μ increases

- utility is added to nobody: all are still left with zero
- the server works more, not less: $p_e \rho$ goes up with μ

$$p_s = \arg \max_{0$$

$$p_s = \arg \max_{0
$$R - \frac{C}{\mu(1 - p_s\rho)^2} = 0$$$$

In social optimization, the society is indifferent whether the marginal customer joins or not

$$p_s = \arg \max_{0
$$R - \frac{C}{\mu(1 - p_s\rho)^2} = 0$$$$

In social optimization, the society is indifferent whether the marginal customer joins or not

• those who do not join, end with nothing

$$p_s = \arg \max_{0
$$R - \frac{C}{\mu(1 - p_s\rho)^2} = 0$$$$

In social optimization, the society is indifferent whether the marginal customer joins or not

- those who do not join, end with nothing
- those who join, gain something
$$p_s = \arg \max_{0
$$R - \frac{C}{\mu(1 - p_s\rho)^2} = 0$$$$

In social optimization, the society is indifferent whether the marginal customer joins or not

- those who do not join, end with nothing
- those who join, gain something

$$p_s = \arg \max_{0
$$R - \frac{C}{\mu(1 - p_s\rho)^2} = 0$$$$

In social optimization, the society is indifferent whether the marginal customer joins or not

- those who do not join, end with nothing
- those who join, gain something

In case μ increases:

• more join,
$$\lambda p_s = \mu - \sqrt{C \mu/R}$$

$$p_s = \arg \max_{0
$$R - \frac{C}{\mu(1 - p_s\rho)^2} = 0$$$$

In social optimization, the society is indifferent whether the marginal customer joins or not

- those who do not join, end with nothing
- those who join, gain something

In case μ increases:

• more join,
$$\lambda p_s = \mu - \sqrt{\mathcal{C} \mu / \mathcal{R}}$$

• social utility goes up, $(\sqrt{R\mu} - \sqrt{C})^2$

$$p_s = \arg \max_{0
$$R - \frac{C}{\mu(1 - p_s\rho)^2} = 0$$$$

In social optimization, the society is indifferent whether the marginal customer joins or not

- those who do not join, end with nothing
- those who join, gain something

In case μ increases:

• more join,
$$\lambda p_s = \mu - \sqrt{C \mu/R}$$

- social utility goes up, $(\sqrt{R\mu}-\sqrt{C})^2$
- those who join wait less, $\sqrt{R/(C\mu)}$

$$p_s = \arg \max_{0
$$R - \frac{C}{\mu(1 - p_s\rho)^2} = 0$$$$

In social optimization, the society is indifferent whether the marginal customer joins or not

- those who do not join, end with nothing
- those who join, gain something

In case μ increases:

• more join,
$$\lambda p_s = \mu - \sqrt{C \mu/R}$$

- social utility goes up, $(\sqrt{R\mu} \sqrt{C})^2$
- those who join wait less, $\sqrt{R/(C\mu)}$
- the server works more, not less, $p_s
 ho = 1 \sqrt{C/(\mu R)}$

• commuters have the option to drive to work or to take the bus

- commuters have the option to drive to work or to take the bus
- the more who opt for driving, the longer driving takes

- commuters have the option to drive to work or to take the bus
- the more who opt for driving, the longer driving takes
- the more who opt for the bus, the shorter is the ride

- commuters have the option to drive to work or to take the bus
- the more who opt for driving, the longer driving takes
- the more who opt for the bus, the shorter is the ride
- assume that all using one of the options (any), is not an equilibrium

- commuters have the option to drive to work or to take the bus
- the more who opt for driving, the longer driving takes
- the more who opt for the bus, the shorter is the ride
- assume that all using one of the options (any), is not an equilibrium
- in equilibrium,

- commuters have the option to drive to work or to take the bus
- the more who opt for driving, the longer driving takes
- the more who opt for the bus, the shorter is the ride
- assume that all using one of the options (any), is not an equilibrium
- in equilibrium,
 - some drive, the rest take the bus

- commuters have the option to drive to work or to take the bus
- the more who opt for driving, the longer driving takes
- the more who opt for the bus, the shorter is the ride
- assume that all using one of the options (any), is not an equilibrium
- in equilibrium,
 - some drive, the rest take the bus
 - both options come with the same amount of time

• suppose the road capacity is increased

- suppose the road capacity is increased
- in the new equilibrium, more drive, less take the bus (still identical times)

- suppose the road capacity is increased
- in the new equilibrium, more drive, less take the bus (still identical times)
- since fewer use the bus now, the longer it takes

- suppose the road capacity is increased
- in the new equilibrium, more drive, less take the bus (still identical times)
- since fewer use the bus now, the longer it takes
- hence, the longer is driving as well

- suppose the road capacity is increased
- in the new equilibrium, more drive, less take the bus (still identical times)
- since fewer use the bus now, the longer it takes
- hence, the longer is driving as well
- all are worse off

- suppose the road capacity is increased
- in the new equilibrium, more drive, less take the bus (still identical times)
- since fewer use the bus now, the longer it takes
- hence, the longer is driving as well
- all are worse off
- Social optimization: no roads at all, only buses (or only roads with huge capacity)

• driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu - \lambda)$. $\mu > \lambda$ and μ the road capacity

- driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu \lambda)$. $\mu > \lambda$ and μ the road capacity
- The cab leaves when the 7th arrives

- driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu \lambda)$. $\mu > \lambda$ and μ the road capacity
- The cab leaves when the 7th arrives
- Unobservable. No regrets

- driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu \lambda)$. $\mu > \lambda$ and μ the road capacity
- The cab leaves when the 7th arrives
- Unobservable. No regrets
- Poisson arrivals, rate Λ

- driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu \lambda)$. $\mu > \lambda$ and μ the road capacity
- The cab leaves when the 7th arrives
- Unobservable. No regrets
- Poisson arrivals, rate Λ

- driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu \lambda)$. $\mu > \lambda$ and μ the road capacity
- The cab leaves when the 7th arrives
- Unobservable. No regrets
- Poisson arrivals, rate Λ

• $\mu > \Lambda/3$: otherwise, all using the bus is an equilibrium

- driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu \lambda)$. $\mu > \lambda$ and μ the road capacity
- The cab leaves when the 7th arrives
- Unobservable. No regrets
- Poisson arrivals, rate Λ

- $\mu > \Lambda/3$: otherwise, all using the bus is an equilibrium
- $\mu < \Lambda$: otherwise, all driving is an equilibrium

- driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu \lambda)$. $\mu > \lambda$ and μ the road capacity
- The cab leaves when the 7th arrives
- Unobservable. No regrets
- Poisson arrivals, rate Λ

- $\mu > \Lambda/3$: otherwise, all using the bus is an equilibrium
- $\mu < \Lambda$: otherwise, all driving is an equilibrium

- driving a car: an M/M/1 model. If λ use it, it takes $1/(\mu \lambda)$. $\mu > \lambda$ and μ the road capacity
- The cab leaves when the 7th arrives
- Unobservable. No regrets
- Poisson arrivals, rate Λ

- $\mu > \Lambda/3$: otherwise, all using the bus is an equilibrium
- $\mu < \Lambda$: otherwise, all driving is an equilibrium

Equilibrium: $p_e \Lambda$ use the bus where p_e obeys

$$\frac{3}{p_e\Lambda} = \frac{1}{\mu - (1 - p_e)\Lambda}$$

 p_e decreases with μ but $3/(p_e\Lambda)$ increases in μ

• (A, A) is socially optimal

- (A, A) is socially optimal
- (A, A) is not an equilibrium

- (A, A) is socially optimal
- (A, A) is not an equilibrium
- (B, B) is the unique equilibrium

- (A, A) is socially optimal
- (A, A) is not an equilibrium
- (B, B) is the unique equilibrium
- action *B* is a dominant action (for both)

- (A, A) is socially optimal
- (A, A) is not an equilibrium
- (B, B) is the unique equilibrium
- action *B* is a dominant action (for both)

- (A, A) is socially optimal
- (A, A) is not an equilibrium
- (B, B) is the unique equilibrium
- action *B* is a dominant action (for both)

Suppose both A and B exist. Better having someone (government, dictator, regulator) who will remove option B.

- (A, A) is socially optimal
- (A, A) is not an equilibrium
- (B, B) is the unique equilibrium
- action B is a dominant action (for both)

Suppose both A and B exist. Better having someone (government, dictator, regulator) who will remove option B.

Suppose the status-quo was only A. An inventor comes with another option, B.

- (A, A) is socially optimal
- (A, A) is not an equilibrium
- (B, B) is the unique equilibrium
- action B is a dominant action (for both)

Suppose both A and B exist. Better having someone (government, dictator, regulator) who will remove option B.

Suppose the status-quo was only A. An inventor comes with another option, B.

• if I was the only one who could enjoy it, great for me (and who cares about the others)
The prisoner's dilemma

- (A, A) is socially optimal
- (A, A) is not an equilibrium
- (B, B) is the unique equilibrium
- action B is a dominant action (for both)

Suppose both A and B exist. Better having someone (government, dictator, regulator) who will remove option B.

Suppose the status-quo was only A. An inventor comes with another option, B.

- if I was the only one who could enjoy it, great for me (and who cares about the others)
- if all can use it, we are all worse off

Breass Paradox

4000 commuters

Breass Paradox

4000 commuters

Equilibrium: 2000 go in each route **Social optimization:** same behavior

Individual cost 65. Social cost $65 \times 4000 = 260,000$

Breass Paradox

4000 commuters

Equilibrium: 2000 go in each route **Social optimization:** same behavior

Individual cost 65. Social cost $65 \times 4000 = 260,000$

An individual who switches losses from the switch

4000 commuters

Equilibrium: 2000 go in each route **Social optimization:** same behavior

Individual cost 65. Social cost $65 \times 4000 = 260,000$

An individual who switches losses from the switch

For others, some win, some lose. The absolute changes coincide, **but** there are more losers than winners. This is more so when additional switches occur

If only one could use the bridge, he would gain $\approx 45-40=5.$

If only one could use the bridge, he would gain $\approx 45-40=5.$

Equilibrium: All use the bridge

Social optimization: 500 use bridge, 1750 use original routes each

If only one could use the bridge, he would gain $\approx 45-40=5.$

Equilibrium: All use the bridge

Social optimization: 500 use bridge, 1750 use original routes each

Equilibrium: individual cost **80**. Social cost $80 \times 4000 = 320,000$ **Social optimization:** 500 suffer 45 < 65, 3500 suffer 67.5 > 65

If only one could use the bridge, he would gain $\approx 45-40=5.$

Equilibrium: All use the bridge

Social optimization: 500 use bridge, 1750 use original routes each

Equilibrium: individual cost **80**. Social cost $80 \times 4000 = 320,000$ **Social optimization:** 500 suffer 45 < 65, 3500 suffer 67.5 > 65

Social cost in social optimality: $500 \times 45 + 3500 \times 67.5 = 258,750 < 260,000 < 320,000$

If only one could use the bridge, he would gain $\approx 45-40=5.$

Equilibrium: All use the bridge

Social optimization: 500 use bridge, 1750 use original routes each

Equilibrium: individual cost **80**. Social cost $80 \times 4000 = 320,000$ **Social optimization:** 500 suffer 45 < 65, 3500 suffer 67.5 > 65

Social cost in social optimality: $500\times45+3500\times67.5=258,750<260,000<320,000$

Price of Anarchy (PoA):

$$\frac{320,000}{258,750} \approx \frac{5}{4} < \frac{4}{3}$$
 (theoretical bound)

On average, we wait more than average

The model:

• 2*n* customers seek service in one out of two servers

- 2*n* customers seek service in one out of two servers
- all need to show up before 9:00am

- 2*n* customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)

- 2*n* customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly
- Q: What is the mean queueing time?

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly
- Q: What is the mean queueing time?
- A: Uniform between 0 and n? (n-1)/2??

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly
- Q: What is the mean queueing time?
- A: Uniform between 0 and n? (n-1)/2?? No!

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly
- Q: What is the mean queueing time?
- A: Uniform between 0 and n? (n-1)/2?? No!
- A: Correct above by $O(\sqrt{n})$? 'inspection paradox'? 'length bias'?

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly
- Q: What is the mean queueing time?
- A: Uniform between 0 and n? (n-1)/2?? No!
- A: Correct above by $O(\sqrt{n})$? 'inspection paradox'? 'length bias'? No!

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly
- Q: What is the mean queueing time?
- A: Uniform between 0 and n? (n-1)/2?? No!
- A: Correct above by $O(\sqrt{n})$? 'inspection paradox'? 'length bias'? No!

A: (n-1)/2 + 1/4??

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly
- Q: What is the mean queueing time?
- A: Uniform between 0 and n? (n-1)/2?? No!
- A: Correct above by $O(\sqrt{n})$? 'inspection paradox'? 'length bias'? No!
- A: (n-1)/2 + 1/4?? Yes!

- 2n customers seek service in one out of two servers
- all need to show up before 9:00am
- at each server, random order of service (no early birds)
- service lasts one minute
- unobservable: each selects the server randomly
- Q: What is the mean queueing time?
- A: Uniform between 0 and n? (n-1)/2?? No!
- A: Correct above by $O(\sqrt{n})$? 'inspection paradox'? 'length bias'? No!
- A: (n-1)/2 + 1/4?? Yes!

Anti-paradoxically, the error is not a function of n and equals (only) a quarter of a service time

Proof

Proof

"Proof" 1: $\frac{n+O(\sqrt{n})}{2n}\frac{n+O(\sqrt{n})}{2} + \frac{n-O(\sqrt{n})}{2n}\frac{n-O(\sqrt{n})}{2} = \frac{n}{2} + O1/\sqrt{n}$

Proof 2: Tag a customer

- (2n-1)/2 others are expected in each line
- (2n-1)/4 = (n-1)/2 + 1/4 services ahead

Proof

"Proof" 1: $\frac{n+O(\sqrt{n})}{2n}\frac{n+O(\sqrt{n})}{2} + \frac{n-O(\sqrt{n})}{2n}\frac{n-O(\sqrt{n})}{2} = \frac{n}{2} + O1/\sqrt{n}$

Proof 2: Tag a customer

Proof 3:

$$X \sim \mathsf{Bin}(2n, 1/2)$$

Mean queueing time:

$$\mathsf{E}(\frac{X}{2n}\frac{X-1}{2} + \frac{2n-X}{2n}\frac{2n-X-1}{2}) = \frac{n-1}{2} + \frac{1}{4}$$

THANK YOU

٩

- The equilibrium arrival rate: $\lambda_e = \mu \frac{C}{R}$
- The socially optimal arrival rate: $\lambda_s = \mu \sqrt{\frac{C\mu}{R}}$
- Either rate is not a function of the (high) potential rate

$$\lambda_s < \lambda_e \Rightarrow \text{long queues}$$

- The consumer surplus is zero in equilibrium. It is $(\sqrt{R\mu} - \sqrt{C})^2$ in social optimization
- No gain in equilibrium from extra service capacity. A gain under social optimization