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I. The M/G/∞ estimation problem:

formulation and background



The M/G/∞ estimation problem

I Arrival process: customers come to a system according to

homogeneous Poisson process of intensity λ.

I Service times: upon arrival, every customer obtains service

and leaves the system after service completion. The service

times are i.i.d. random variables, independent of the arrival

process, with common distribution G.

I Observations: during some time period incomplete

“arrival–departure” data or “number–of–busy–servers”

recordings are given .

I Goal: estimate (make inference on) the service time

distribution G and/or functionals thereof.



Observation schemes

I (τj)j∈Z are arrival epochs: homogeneous Poisson process of

intensity λ on R;

I (σj)j∈Z are serivice times: i.i.d. random variables,

independent of (τj)j∈Z, with common distribution G.

I (tj)j∈Z are departure epochs: tj = τj + σj, j ∈ Z.

I Arrival–departure data: for a given time interval we observe

(A): arrival and departure epochs without matchings;

(B): superposed arrival–departure epochs without

identification of the epoch type;

I Queue–length data: for a given time interval we observe

(C): queue–length (number–of–busy servers) process.



Arrival–departure data

I The departure point process is obtained by translating the

input points by i.i.d. random variables with distribution G.

It is also Poisson process of intensity λ.
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I (A): (τj), (tj) are observed without correspondences (arrows);

I (B): epochs (sj) of the superposed process are recorded

without the epoch type.



Queue–length data

I (C): queue–length (number of busy servers) process X(t),

X(t) =
∑
j∈Z

1{τj ≤ t, σj > t− τj}, t ∈ R.
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I Assume that {X(kδ), k = 1, . . . , n, T = nδ} is observed...



Applications

I The M/G/∞ model is used in many applications:

– Communication systems

Beneš (1957), Mandjes & Zuraniewski (2011),...

– Mobility of particles

dates back to Smoluchowski (1906);

Rothschild (1953), Lindley (1956), Bingham &

Dunham (1997),...

– Modelling a low density traffic

Renyi (1964), Brown (1970), Petty et al. (1998),...



1. Existing literature: arrival–departure data

I “Sequence of differences” estimator of Brown (1970)

– Associate each output point tj in [t0, tn] with the nearest

input point τk to the left of tj. Call the corresponding

distances zj, j = 1, . . . , n.

– The sequence {zj} is stationary and ergodic, zj has

distribution D:

D(x) = 1− (1−G(x))e−λx ⇔ G(x) = 1− (1−D(x))eλx.

– Estimate D empirically using z1, . . . , zn, and invert for G.

– Consistency of the estimator is proved.



2. Existing literature: arrival–departure data

I Recent variations on Brown’s idea

– Blanghaps, Nov & Weiss (2013): an estimator can be

based on distances to the rth nearest input point;

consistency of the estimator is shown...

– Schweer & Wichelhaus (2015): a Brown–type estimator

is considered for a discrete queue model, and a functional

central limit theorem is proved...



Existing literature: queue–length data

I Methods based on the relationship between correlation

function of {X(t)} and G: correlation function of {X(t)}
equals to the normalized integrated tail of G.

– Pickands & Stine (1997): discrete model, standard time

series methods for estimating correlations;

– Bingham & Pitts (1999): standard time series methods

for estimating the integrated normalized tail of G.

I Other observation schemes:

– Hall & Park (2004): observations of durations of the busy

periods.



Research questions

I Only consistency results in the setting (A) are available.

I Research questions partially answered in this talk:

∗ how to construct estimators of G and/or functionals

thereof under different observation schemes?

∗ what is the achievable estimation accuracy in the original

M/G/∞ problem?



II. Estimation from the arrival–departure

data



A model of random translations

I Input process: M is homogeneous Poisson of intensity λ

M :=
∑
j∈Z

ετj , εx(A) :=

 1, x ∈ A,
0, x /∈ A,

x ∈ R, A ∈ B.

I Output process: for (σj) independent of M ,

N :=
∑
j∈Z

εtj , tj = τj + σj , σj
iid∼ G,

(σj)j∈Z are not necessarily non–negative random variables.

I Superposed process:

S =
∑
j∈Z

εsj := M +N.



Estimation problem

I Problem: estimate G on the basis of

(A): a realization of the bivariate point process (M,N)|T ,

restricted to a time “window“ T = TM × TN .

(B): a realization of the superposed process S|T , restricted to

a time window T .

I In terms of the marked point process {sj ,κj}j∈Z where

κj =

 1, sj is an input point,

2, sj is an output point

(A): corresponds to observation of {sj ,κj};

(B): {sj} are observed, but the marks {κj} are not.



Some properties of (M,N)

I Proposition 1: Let {Ai}i=1,...,m and {Bl}l=1,...,n be two families

of disjoint intervals of the real line; then

log EG exp
{ m∑
i=1

ηiM(Ai) +
n∑
l=1

ξlN(Bl)
}

= λ
m∑
i=1

(eηi − 1)|Ai|

+ λ
n∑
l=1

(eξl − 1)|Bl|+ λ
m∑
i=1

n∑
l=1

(eηi − 1)(eξl − 1)Q(Ai, Bl),

where | · | is the Lebesgue measure, and

Q(A,B) :=

∫
A

G(B − x)dx. (1)

I Notation: G(I) := G(b)−G(a), for I = (a, b], a < b.



Some properties of S

I Proposition 2: Let {Ai}i=1,...,m be disjoint intervals of R; then

for any η = (η1, . . . , ηm) ∈ Rm

log EG exp
{ m∑
i=1

ηiS(Ai)
}

= 2λ
m∑
i=1

(eηi − 1)|Ai|

+ λ
m∑
i=1

m∑
l=1

(eηi − 1)(eηl − 1)Q(Ai, Al),

where Q(·, ·) is defined in (1).

I Remark: S is the Gauss–Poisson process, its p.g.f. is

GS(η) := EG

{∏
j∈Z

η(sj)
}

= EG exp
{∫

log η(t)dS(t)
}

= exp
{

2λ

∫
[η(t)− 1]dt+ λ

∫∫
[η(t)− 1][η(τ)− 1]Q(dτ,dt)

}
.



Proof outline

I Step 1: conditioning on (τj):

EG

[
e
∑n
i=1 ηiM(Ai)+

∑m
l=1 ξlN(Bl)

∣∣∣(τj)] = exp
{∑
j∈Z

f(τj)
}
,

where

f(x) :=
n∑
i=1

ηi1Ai(x) + log
[ m∑
l=1

(eξl − 1)G(Bl − x) + 1
]
.

I Step 2: the use of Campbell’s formula

EG exp
{∑

j

f(τj)
}

= exp
{
λ

∫ ∞
0

[ef(x) − 1]dx
}
.



Covariance measures

I Corollary 1: For any two intervals A and B one has

EG
[
M(A)N(B)

]
= λ2|A| · |B|+ λQ(A,B),

and for dM(τ) = M((τ, τ + dτ ]) and dN(t) = N((t, t+ dt])

EG[dM(τ)dN(t)] = λ2dτdt+ λdG(t− τ)dτ.

I Corollary 2: Let A1 and A2 be disjoint intervals; then

EG[S(A1)S(A2)] = 4λ2|A1||A2|+ λ
[
Q(A1, A2) +Q(A2, A1)

]
.

For A1 = (τ, τ + dτ ] and A2 = (t, t+ dt] with τ 6= t one has

EG[dS(τ)dS(t)] = 4λ2dτdt+ λ
[
dG(t− τ)dτ + dG(τ − t)dt

]
.

I The proof is by differentiation of formulas in Propositions 1, 2.



Important corollary

I Corollary 3: For any function ϕ for which the integrals on the

RHS are defined

EG

[ ∫∫
ϕ(τ, t)dM(τ)dN(t)

]
= EG

[∑
j∈Z

∑
k∈Z

ϕ(τj , tk)
]

= λ2

∫∫
ϕ(τ, t)dτdt+ λ

∫∫
ϕ(τ, t)dG(t− τ)dτ, (2)

and for Ω := {(τ, t) : τ 6= t}

EG

[ ∫∫
Ω

ϕ(τ, t)dS(τ)dS(t)
]

= 4λ2

∫∫
Ω

ϕ(τ, t)dτdt

+ λ

∫∫
Ω

ϕ(τ, t)[dG(t− τ)dτ + dG(τ − t)dt].

I Expression (2) appeared in Mori (1975) who attributes it to

Cox & Lewis (1972). We will call the resulting estimator

[based on (2)] the Cox–Lewis estimator.



Estimator based on (M,N)|T

I Goal: estimate G(I) = G(b)−G(a), I := (a, b].

I Data: realization of (M,N)|T restricted to

T = [τmin, τmax]× [τmin + a, τmax + b], T := τmax − τmin,

DT =
{

(τj : τmin ≤ τj ≤ τmax), (tk : τmin + a ≤ tk ≤ τmax + b)
}
.

I Estimator: Let ϕ0(τ, t) := 1[τmin,τmax](τ)1I(t− τ); and

Ĝ(I) := 1
λT

∫∫
ϕ0(τ, t)dM(τ)dN(t)− λ|I|

= 1
λT

∑
j∈Z

∑
k∈Z

1[τmin,τmax](τj)1I(tk − τj)− λ|I|.



Accuracy of Ĝ(I)

I Theorem 1: For any G the estimator Ĝ(I) of G(I) is

unbiased, and

varG{Ĝ(I)} = 2λ|I|
T

{
|I|+

∫ T

−T
G(I + u)

(
1− |u|T

)
du− |I|

2

6T

}
+ |I|

T + 2
T |I|G(I) + 1

T

∫ T

−T
G(I + u)G(I − u)

(
1− |u|T

)
du

+ 2
T

∫ |I|
0

[G(I) +G(b− u)−G(a+ u)]
(
1− u

T

)
du + G(I)

λT .



In the M/G/∞ setting...

I In the M/G/∞ setting G(0) = 0, [τmin, τmax] = [0, T ], I = (0, x0],

so that the estimator is given by

Ĝ(x0) = 1
λT

∑
j∈Z

∑
k∈Z

1[0,T ](τj)1[0,x0](tk − τj)− λx0. (3)

I Theorem 2: The estimator Ĝ(x0) is unbiased and

varG{Ĝ(x0)} = 2λx0

T

{
x0 +

∫ T

−T
[G(x0 + u)−G(u)]

(
1− |u|T

)
du− x2

0

6T

}
+ 2
T x0G(x0) + 1

T

∫ T

−T
[G(x0 + u)−G(u)][G(x0 − u)−G(−u)]

(
1− |u|T

)
du

+ x0

T + 2
T

∫ x0

0

[G(x0) +G(x0 − u)−G(u)]
(
1− u

T

)
du + G(x0)

λT .



Estimator based on S|T

I Theorem 3:

Let G(0) = 0, ϕ∗(τ, t) := 1[0,T ](τ)1(0,x0](t− τ), and

G̃(x0) = 1
λT

∫∫
ϕ∗(τ, t)dS(τ)dS(t)− 4λx0

= 1
λT

∑
j∈Z

∑
k∈Z

1[0,T ](sj)1(0,x0](sk − sj)− 4λx0.

Then G̃(x0) is an unbiased estimator of G(x0), and

varG{G̃(x0)} = 1
TR

(1)
T (λ, x0;G) + 1

T 2R
(2)
T (λ, x0;G),

where R
(1)
T and R

(2)
T are positive functions satisfying

R
(1)
T (λ, x0;G) ≤ 76λx2

0 + 36x0 + 1
λG(x0), R

(2)
T (λ, x0;G) ≤ 36λx3

0.



Remarks

I Exact expressions for R
(1)
T (λ, x0;G) and R

(2)
T (λ, x0;G) are

available...

I Qualitatively the behavior of G̃(x0) is similar to that of Ĝ(x0):

– the rate of convergence is parametric O
(

1
T

)
in terms of

dependence on the observation horizon T ;

– the accuracy deteriorates with growth of λ and x0;

– if λ and T are large, the leading term is ∼ λx2
0/T .

I No conditions on G: e.g., it can have infinite expectation.

Can we do better?



III. Estimation from the queue–length

data



Queue–length data

I The queue–length (number of busy servers) process X(t):

X(t) =
∑
j∈Z

1{τj ≤ t, σj > t− τj}, t ∈ R.

I The queue–length data contains more information than the

arrival–departure data:

– from observation of {X(t)} one can reconstruct the arrival

and departure epochs;

– if the arrival and departure epochs and the initial state of

the system are known then the queue–length process can

be reconstructed.

I The available data: {X(kδ), k = 1, . . . , n, T = nδ} for some

small δ > 0.



Properties of the queue–length process

Define:

1
µ :=

∫ ∞
0

[1−G(t)]dt, ρ := λ
µ , H(t) := µ

∫ ∞
t

[1−G(x)]dx.

Proposition 3:

(a) X(t) ∼ Poisson(ρ), ∀t ∈ R, and {X(t), t ∈ R} is stationary with

covG{X(t), X(s)} = ρH(t− s), ∀t, s ∈ R.

(b) Let X = (X(δ), . . . , X(nδ)); then for any θ ∈ Rn

log EG
[

exp{θTX}
]

= ρSn(θ),

Sn(θ) :=

n∑
k=1

(eθk − 1)

+

n−1∑
k=1

H(kδ)

n−1∑
m=k

(
eθm−k+1 − 1

)
e
∑m
i=m−k+2 θi

(
eθm+1 − 1

)
.



Remarks

I Statement (a) is well known...

I Statement (b) for n = 2, 3 appears in Beneš (1957),

Lindley (1956). To the best of our knowledge, the case of

general n is new.

I There is a nice structure in the formula:

Let 1 ≤ i ≤ j ≤ k ≤ m ≤ n; then

1
ρ ln EG

[
exp{θ1Xi + θ2Xj + θ3Xk + θ4Xm}

]
=
∑4
i=1(eθ` − 1)

+ Hj−i(e
θ1 − 1)(eθ2 − 1) + Hk−i(e

θ1 − 1)eθ2(eθ3 − 1)

+ Hm−i(e
θ1 − 1)eθ2+θ3(eθ4 − 1) + Hk−j(e

θ2 − 1)(eθ3 − 1)

+ Hm−j(e
θ2 − 1)eθ3(eθ4 − 1) +Hm−k(eθ3 − 1)(eθ4 − 1),

where the suffix notation is used Xi := X(iδ), Hi := H(iδ).



Proposition 3: proof outline

I Step 1: conditioning on {τj , j ∈ Z} one can show that

EG
[

exp
{
θTX

}]
= EG

[
exp

{∑
j∈Z

f(τj)
}]
,

f(x) := ln
{

1 +
m∑
k=1

[
exp

{ k∑
i=1

θi1(x ≤ ti)
}
− 1
]
PG[σj ∈ Ik(x)]

}
,

where I0(x) = (−∞, t1 − x], Im(x) = (tm − x,∞), and

Ik(x) = (tk − x, tk+1 − x] for k = 1, . . . ,m− 1, ti := iδ.

I Step 2: Application of Campbell’s formula for Poisson

processes,

EG

[
exp

{∑
j∈Z

f(τj)
}]

= exp
{
λ

∫ ∞
−∞

[ef(x) − 1]dx
}
.



Idea of estimator construction

I Covariance function of {X(t)}:

R(t) := covG{X(s), X(s+ t)} = ρH(t)

= ρ ·
∫∞
t

[1−G(u)]du∫∞
0

[1−G(u)]du
= λ

∫ ∞
t

[1−G(u)]du.

Hence,

1−G(t) = − 1
λR
′(t), t ∈ R+. (4)

I The idea is to estimate the first derivative of the covariance

function of X(t) at point x0, and then recover G(x0) from (4).



1. Estimator construction

I Estimators of Rk := R(kδ): ρ̂ = 1
n

∑n
i=1Xi, Xi := X(iδ),

R̂k :=
1

n− k
n−k∑
t=1

(Xt − ρ̂)(Xt+k − ρ̂), k = 0, 1, . . . , n− 1.

I Local window: for h > 0 let Dx := [x− h, x+ h], ∀x ∈ [h, T − h],

and MDx = {k : kδ ∈ Dx}, NDx = #{MDx}.
I Differentiating filter: fix integer ` > 0, real h ≥ 1

2 (`+ 2)δ, and
let {ak(x), k ∈MDx} be the solution to

min
∑

k∈MDx

a2k(x)

s.t.
∑

k∈MDx

ak(x) = 0,

∑
k∈MDx

ak(x)(kδ)
j = jxj−1, j = 1, . . . , `.

(Opt(x))



2. Estimator construction

I Remarks

– h ≥ 1
2 (`+ 2)δ ensures at least `+ 1 grid points in MDx .

– The filter reproduces the first derivative of any

polynomial of degree ≤ `:∑
k∈MDx

ak(x)p(kδ) = p′(x), ∀p : deg(p) ≤ `.

I Estimator of G(x0):

G̃h(x0) = 1 + 1
λ

∑
k∈MDx0

ak(x0)R̂k.

I Two design parameters to be chosen:

degree of the fitted polynomial ` and window width h.



Functional class

I Local smoothness: let β > 0, L > 0 and I ⊂ (0,∞) be a closed

interval containing x0. We say that G ∈ Hβ(L, I) if

|G(bβc)(x)−G(bβc)(y)| ≤ L|x− y|β−bβc, ∀x, y ∈ I,

where bβc := max
{
k ∈ {0, 1, 2, . . .

}
: k < β}.

I Tail (moment) conditions: we say that G ∈Mp(K) with

p ≥ 1, K > 0 if

EG[σp] =

∫ ∞
0

pxp−1[1−G(x)]dx ≤ K <∞.

If G ∈M2(K) then {H(iδ)} is summable ⇒ short–range

dependence.

I Functional class: we consider

Σβ = Σβ(L, I,K) := Hβ(L, I) ∩M2(K).



Upper bound

I Theorem 4:

Let I = [x0 − d, x0 + d] ⊂ [0, (1− κ)T ] for some κ ∈ (0, 1). Let

G̃∗(x0) be the estimator G̃h∗(x0) associated with

` ≥ bβc+ 1, h∗ =

[
K

L2κT

(
1 + 1

λ

)]1/(2β+2)

.

If

K

L2κ
(
1 + 1

λ

)
d−2β−2 ≤ T ≤ K

L2κ
(
1 + 1

λ

)[ 2

(`+ 2)δ

]2β+2

then

sup
G∈Σβ

[
EG|G̃∗(x0)−G(x0)|2

]1/2
≤ C(`)L1/(β+1)

[
K

κT
(
1+ 1

λ

)]β/(2β+2)

.



Remarks

I Under local smoothness and second moment conditions:

Riskx0 [G̃∗; Σβ ] := sup
G∈Σβ

[
EG|G̃∗(x0)−G(x0)|2

]1/2
� C

[
1

T−x0
(1 + 1

λ )
]β/(2β+2)

, T →∞.

I The rate of convergence is nonparametric, but dependence

on λ and x0 is ”weak“.

I What about optimality of this estimator?



Gaussian approximation in heavy traffic

I Corollary to Proposition 3:

Let {M`/G/∞, ` = 1, 2, . . .} be a sequence of the M/G/∞
systems with fixed G and arrival rates λ` = `λ, λ > 0. Let

Xn
` = (X`(δ), . . . , X`(nδ)) be observations of the queue–length

process in the `th system; then

Xn
` − `ρen√

`ρ

d→ Nn(0, V (H)), `→∞,

where ρ = λ
µ , en = (1, . . . , 1) ∈ Rn, V (H) = {H((i− j)δ)}i,j=1,...,n.

I This result is in line with general results of Borovkov (1967),

Iglehart (1973) and Whitt (1974) on weak convergence for

queues.



A Gaussian model

I In heavy traffic {X(t)} is close to a stationary Gaussian

process. By (4), in the heavy traffic limit, 1−G is the

negative derivative of the covariance function.

I A problem for stationary Gaussian process:

Let {X(t), t ∈ R} be a stationary Gaussian process with

zero mean and covariance function γ. We observe

Xn = (X(δ), . . . , X(nδ)), ti = iδ, i = 1, . . . , n, nδ = T .

I The goal is to estimate θ = γ′(x0) using observation Xn. We

are mainly interested in lower bounds on the minimax risk

Risk∗x0
[Γ] = inf

θ̂
sup
γ∈Γ

[
Eγ
∣∣θ̂ − γ′(x0)

∣∣2]1/2,
where Γ is a suitable class of covariance functions.



Lower bound in the Gaussian problem

I Definition: Let I = [x0 − d, x0 + d], L > 0 and β > 0. We say

that γ ∈ Γβ := Γβ(L, I,K) if

(i)
∫∞
−∞ |γ(t)|dt ≤ K <∞;

(ii) γ is ` := max{k ∈ N : k < β + 1} times continuously

differentiable on I and

|γ(`)(x)− γ(`)(y)| ≤ L|x− y|β+1−`, ∀x, y ∈ I.

I Theorem 5:

There exist positive constants C1, C2 and c depending

on β, x0, d and K only such that if

C1δ
−2 ≤ T, L2T ≤ C2δ

−2β−2

then

lim inf
T→∞

{
L−1/(β+1)T β/(2β+2) Risk∗x0

[Γβ ]
}
≥ c > 0.



Remarks

I The lower bound in the Gaussian model strongly suggests

that the ”queue–length“–based estimator is rate optimal in

the heavy traffic regime...

I In the original model derivation of lower bounds on the risk is

difficult because of the dependence structure. The

distribution of observations is not available in a usable form.



IV. Comparison of estimators of G



Three estimators of G

Monotonized and confined to [0, 1] versions of the estimators:

I The Cox–Lewis estimator

ĜCL(x0) = 1
λT

∑
j∈Z

∑
k∈Z

1[0,T ](τj)1[0,x0](tk − τj)− λx0.

I Local polynomial estimator:

ĜLP(x0) = 1 + 1
λ

∑
k∈MDx0

ak(x0)R̂k.

I Brown’s estimator:

ĜB(x0) = 1− eλx0

∑
k∈Z 1(x0,∞)(zk)1[0,T ](tk)∑

k∈Z 1[0,T ](tk)
.



Numerical experiments

I The goal: study influence of the arrival rate λ and the tail of

G on accuracy.

I Experiment 1: T = 1000, G(x) = 1− e−x, λ ∈ {0.5, 1, 5, 15}. The

distribution G is estimated at equidistant points on [0, 4].

I Experiment 2: T = 1000, λ = 1, G(x) = 1− e−µx with

µ ∈ { 1
2 ,

1
5 ,

1
10 ,

1
15}. The distribution G is estimated at

equidistant points on [0, 10].

I The bandwidth of ĜLP(x0) was chosen minimal, h = 3δ.

I In both experiments we compute the maximal error

Err{Ĝ} = max
x∈{xi}

|Ĝ(x)−G(x)|, Ĝ ∈ {ĜCL, ĜLP, ĜB}

over 100 simulation runs.



Experiment 1: typical realizations

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cox-Lewis estimator

True distribution function

LP estimator

Brown's estimator

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cox-Lewis estimator

True distribution function

LP estimator

Brown's estimator

(a) λ = 0.5 (b) λ = 1

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cox-Lewis estimator

True distribution function

LP estimator

Brown's estimator

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cox-lewis estimator

True distribution function

LP estimator

Brown's estimator

(c) λ = 5 (d) λ = 15



Experiment 1: accuracy boxplots
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Experiment 2: typical realizations
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Experiment 2: accuracy boxplots
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Comparison of estimators

I Experiment 1:

– ĜCL and ĜB behave poorly for large values of λ and x0. In

particular, ĜB is completely upset for λ = 15, although it

behaves well for small λ. ĜCL exhibits more variability

than ĜB.

– ĜLP is stable and even improves with growth of λ.

I Experiment 2:

– Accuracy of all estimators is badly affected by heavy tails

of G. ĜB is most sensitive, and ĜLP is most stable.



V. Estimation of service time expectation

and arrival rate



Estimation of service time expectation

I Estimation from the arrival–departure data

Let α := 1
µ = EG[σ], and Ĝ be the Cox–Lewis estimator of G.

For b > 0 let

α̂ =

∫ b

0

[1− Ĝ(t)]dt.

Let Mp(A) be the set of distributions with pth moment ≤ A,

Mp(A) :=
{
G : p

∫ ∞
0

xp−1[1−G(x)]dx ≤ A <∞
}
, p > 1.

I Theorem 6: Let α̂∗ be the estimator associated with

b = b∗ := (A/p)1/(p+1)(T/λ)1/(2p+2). Then for all

T ≥ λ(1 ∨ λ−2)2p+2(A/p)2 one has

sup
G∈Mp(A)

EG|α̂∗ − α|2 ≤ C
(
A
p

)4/(p+1)( λ
T

)(p−1)/(p+1)
,

where C is an absolute constant.



Remarks

I The rate of convergence is nonparametric, O(T−
p−1
2p+2 ).

We were not able to construct an estimator whose risk

converges at faster rate.

I Estimation of α from the queue–length data is immediate:

α̃ =
ρ̂

λ
=

1

λn

n∑
i=1

Xi, Xi := X(iδ).

It is easy to verify that

sup
G∈Mp(A)

EG|α̃− α|2 ≤
C(A, p)α

λT
.

I Even though the difference between observations schemes

(A) and (C) is only in the initial state of the queue, the

results are completely different!



Estimation of arrival rate

I Arrival–departure data

the problem is trivial: equivalent to estimating parameter of

exponential distribution from i.i.d. samples.

I Continuous–time queue–length data

the same as for arrival–departure data:

λ̂+ = 1
T ·#

{
t ∈ (0, T ] : X(t)−X(t−) = 1

}
,

λ̂− = 1
T ·#

{
t ∈ (0, T ] : X(t)−X(t−) = −1

}
.

It is immediate to show that

EG,λ
∣∣λ̂+ − λ

∣∣2 = EG,λ
∣∣λ̂− − λ∣∣2 = λT−1, ∀λ,∀G.

What about discrete observations of the queue–length process?



1. Estimation of arrival rate λ

I Problem: estimate λ from Xn = {X(kδ), k = 1, . . . , n}.

I Recall (4): if R(x) = covG{X(t), X(t+ x)} then

1−G(x) = − 1
λR
′(x) ⇒ λ = −R′(0).

I Estimator: If R̂k := 1
n−k

∑n−k
t=1 (Xt − ρ̂)(Xt+k − ρ̂), D0 = [0, 2h],

and {ak(0), k ∈MD0
} is the solution to (Opt(0)) then we put

λ̂ := −
∑

k∈MD0

ak(0)R̂k.

Estimator depends on design parameters h and `.



2. Estimation of arrival rate λ

I Theorem 7: Let I = [0, 2d], and let λ̂∗ be the estimator

associated with ` ≥ bβc+ 1, and h = h∗ :=
[
K
L2T

]1/(2β+2)
. Let

KL−2d−2β−2 ≤ T ≤ KL−2
[

2
(`+2)δ

]2β+2
; then

sup
G∈Σβ(L,I,K)

[
Eλ,G|λ̂−λ|2

]1/2 ≤ C(`)(λ2 +λ)1/2L1/(β+1)
[
K
T

]β/(2β+2)
.

I The proof coincides with that of Theorem 4.

I For discrete observations accuracy of λ̂± is poor: one can

show that

Eλ,G|λ̂± − λ|2 ≤ C

{
λ4δ2 + λ2

[
1
δ

∫ δ

0

G(x)dx
]2

+ λ
T

}
.

Thus, λ̂ may be preferable...



VI. Conclusion



A quote

I David R. Cox in “Some problems of statistical analysis

connected with congestion”, published in 1965, reviews some

statistical problems for queues and writes:

“There are a very large number of papers on particular

probabilistic models for queues and, by comparison, extremely

few papers on the corresponding problems of statistical analysis.”

“When a simple mathematical model is investigated primarily to

get qualitative insight..., the statistical problems are not so

relevant. When, however,... a practical congestion problem is

tackled..., non–trivial statistical problems arise.”

I The first statement is still true...

I Statistical research for queueing models is important, today

even much more important than in the past...



1. Concluding remarks

I With abundance of data on service systems, statistical

inference for stochastic models becomes more and more

important...

I Statistical problems are challenging even for simplest

queueing models:

– observations are dependent;

– joint distributions of observations are not available in a

usable form...

I Fundamental statistical problem

How to judge optimality of estimators in models in which

joint distribution of observations is not available?



2. Concluding remarks

I There are very few results on accuracy of statistical

procedures for queueing models.

I Even for simplest models many questions are unanswered.

For instance, in the M/G/∞ model

– test for exponentiality of G (M/M/∞ queue);

– detect changes in arrival rate to the M/G/∞ queue;

– estimate nonparametrically the arrival rate to the

Mt/G/∞ queue;

– ...

I Other queueing models?


