Statistical inference for the $M / G / \infty$ queue

Alexander Goldenshluger

Department of Statistics
University of Haifa
Israel

Workshop on
"Data Driven Operations Management"
Eurandom, October 24-26, 2016

Outline

I. The $M / G / \infty$ estimation problem

- problem formulation, examples
- existing literature
II. Estimation of G from the arrival-departure data
- bivariate arrival-departure and superposed point processes
- estimators and their accuracy
III. Estimation of G from the queue-length data
- the queue-length random process
- estimator and its properties
IV. Comparison of estimators of G
V. Estimation of service time expectation and arrival rate
VI. Concluding remarks
I. The $M / G / \infty$ estimation problem: formulation and background

The $M / G / \infty$ estimation problem

- Arrival process: customers come to a system according to homogeneous Poisson process of intensity λ.
- Service times: upon arrival, every customer obtains service and leaves the system after service completion. The service times are i.i.d. random variables, independent of the arrival process, with common distribution G.
- Observations: during some time period incomplete "arrival-departure" data or "number-of-busy-servers" recordings are given .
- Goal: estimate (make inference on) the service time distribution G and/or functionals thereof.

Observation schemes

- $\left(\tau_{j}\right)_{j \in \mathbb{Z}}$ are arrival epochs: homogeneous Poisson process of intensity λ on \mathbb{R};
- $\left(\sigma_{j}\right)_{j \in \mathbb{Z}}$ are serivice times: i.i.d. random variables, independent of $\left(\tau_{j}\right)_{j \in \mathbb{Z}}$, with common distribution G.
- $\left(t_{j}\right)_{j \in \mathbb{Z}}$ are departure epochs: $t_{j}=\tau_{j}+\sigma_{j}, j \in \mathbb{Z}$.
- Arrival-departure data: for a given time interval we observe
(A): arrival and departure epochs without matchings;
(B): superposed arrival-departure epochs without identification of the epoch type;
- Queue-length data: for a given time interval we observe (C): queue-length (number-of-busy servers) process.

Arrival-departure data

- The departure point process is obtained by translating the input points by i.i.d. random variables with distribution G. It is also Poisson process of intensity λ.

- (A): $\left(\tau_{j}\right),\left(t_{j}\right)$ are observed without correspondences (arrows);
- (B): epochs $\left(s_{j}\right)$ of the superposed process are recorded without the epoch type.

Queue-length data

(C): queue-length (number of busy servers) process $X(t)$,

$$
X(t)=\sum_{j \in \mathbb{Z}} \mathbf{1}\left\{\tau_{j} \leq t, \sigma_{j}>t-\tau_{j}\right\}, \quad t \in \mathbb{R}
$$

Assume that $\{X(k \delta), k=1, \ldots, n, T=n \delta\}$ is observed...

Applications

- The $M / G / \infty$ model is used in many applications:
- Communication systems

Beneš (1957), Mandjes \& Zuraniewski (2011),...

- Mobility of particles
dates back to Smoluchowski (1906);
Rothschild (1953), Lindley (1956), Bingham \&
Dunham (1997),...
- Modelling a low density traffic

Renyi (1964), Brown (1970), Petty et al. (1998),...

1. Existing literature: arrival-departure data

"Sequence of differences" estimator of Brown (1970)

- Associate each output point t_{j} in $\left[t_{0}, t_{n}\right]$ with the nearest input point τ_{k} to the left of t_{j}. Call the corresponding distances $z_{j}, j=1, \ldots, n$.
- The sequence $\left\{z_{j}\right\}$ is stationary and ergodic, z_{j} has distribution D :

$$
D(x)=1-(1-G(x)) e^{-\lambda x} \Leftrightarrow G(x)=1-(1-D(x)) e^{\lambda x} .
$$

- Estimate D empirically using z_{1}, \ldots, z_{n}, and invert for G.
- Consistency of the estimator is proved.

2. Existing literature: arrival-departure data

- Recent variations on Brown's idea
- Blanghaps, Nov \& Weiss (2013): an estimator can be based on distances to the r th nearest input point; consistency of the estimator is shown...
- Schweer \& Wichelhaus (2015): a Brown-type estimator is considered for a discrete queue model, and a functional central limit theorem is proved...

Existing literature: queue-length data

- Methods based on the relationship between correlation function of $\{X(t)\}$ and G : correlation function of $\{X(t)\}$ equals to the normalized integrated tail of G.
- Pickands \& Stine (1997): discrete model, standard time series methods for estimating correlations;
- Bingham \& Pitts (1999): standard time series methods for estimating the integrated normalized tail of G.
- Other observation schemes:
- Hall \& Park (2004): observations of durations of the busy periods.

Research questions

- Only consistency results in the setting (A) are available.
- Research questions partially answered in this talk:
* how to construct estimators of G and/or functionals thereof under different observation schemes?
* what is the achievable estimation accuracy in the original $M / G / \infty$ problem?

II. Estimation from the arrival-departure data

A model of random translations

- Input process: M is homogeneous Poisson of intensity λ

$$
M:=\sum_{j \in \mathbb{Z}} \epsilon_{\tau_{j}}, \quad \epsilon_{x}(A):=\left\{\begin{array}{ll}
1, & x \in A, \\
0, & x \notin A,
\end{array} \quad x \in \mathbb{R}, A \in \mathscr{B} .\right.
$$

Output process: for $\left(\sigma_{j}\right)$ independent of M,

$$
N:=\sum_{j \in \mathbb{Z}} \epsilon_{t_{j}}, \quad t_{j}=\tau_{j}+\sigma_{j}, \quad \sigma_{j} \stackrel{i i d}{\sim} G,
$$

$\left(\sigma_{j}\right)_{j \in \mathbb{Z}}$ are not necessarily non-negative random variables.

- Superposed process:

$$
S=\sum_{j \in \mathbb{Z}} \epsilon_{s_{j}}:=M+N .
$$

Estimation problem

- Problem: estimate G on the basis of
(A): a realization of the bivariate point process $\left.(M, N)\right|_{\mathcal{T}}$, restricted to a time "window" $\mathcal{T}=\mathcal{T}_{M} \times \mathcal{T}_{N}$.
(B): a realization of the superposed process $\left.S\right|_{\mathcal{T}}$, restricted to a time window \mathcal{T}.
- In terms of the marked point process $\left\{s_{j}, \varkappa_{j}\right\}_{j \in \mathbb{Z}}$ where

$$
\varkappa_{j}= \begin{cases}1, & s_{j} \text { is an input point } \\ 2, & s_{j} \text { is an output point }\end{cases}
$$

(A): corresponds to observation of $\left\{s_{j}, \varkappa_{j}\right\}$;
(B): $\left\{s_{j}\right\}$ are observed, but the marks $\left\{\varkappa_{j}\right\}$ are not.

Some properties of (M, N)

- Proposition 1: Let $\left\{A_{i}\right\}_{i=1, \ldots, m}$ and $\left\{B_{l}\right\}_{l=1, \ldots, n}$ be two families of disjoint intervals of the real line; then

$$
\begin{aligned}
& \log \mathrm{E}_{G} \exp \left\{\sum_{i=1}^{m} \eta_{i} M\left(A_{i}\right)+\sum_{l=1}^{n} \xi_{l} N\left(B_{l}\right)\right\}=\lambda \sum_{i=1}^{m}\left(e^{\eta_{i}}-1\right)\left|A_{i}\right| \\
& \quad+\lambda \sum_{l=1}^{n}\left(e^{\xi_{l}}-1\right)\left|B_{l}\right|+\lambda \sum_{i=1}^{m} \sum_{l=1}^{n}\left(e^{\eta_{i}}-1\right)\left(e^{\xi_{l}}-1\right) Q\left(A_{i}, B_{l}\right),
\end{aligned}
$$

where $|\cdot|$ is the Lebesgue measure, and

$$
\begin{equation*}
Q(A, B):=\int_{A} G(B-x) \mathrm{d} x . \tag{1}
\end{equation*}
$$

- Notation: $G(I):=G(b)-G(a)$, for $I=(a, b], a<b$.

Some properties of S

Proposition 2: Let $\left\{A_{i}\right\}_{i=1, \ldots, m}$ be disjoint intervals of \mathbb{R}; then for any $\eta=\left(\eta_{1}, \ldots, \eta_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{array}{r}
\log \mathrm{E}_{G} \exp \left\{\sum_{i=1}^{m} \eta_{i} S\left(A_{i}\right)\right\}=2 \lambda \sum_{i=1}^{m}\left(e^{\eta_{i}}-1\right)\left|A_{i}\right| \\
+\lambda \sum_{i=1}^{m} \sum_{l=1}^{m}\left(e^{\eta_{i}}-1\right)\left(e^{\eta_{l}}-1\right) Q\left(A_{i}, A_{l}\right),
\end{array}
$$

where $Q(\cdot, \cdot)$ is defined in (1).

- Remark: S is the Gauss-Poisson process, its p.g.f. is

$$
\begin{aligned}
& \mathscr{G}_{S}(\eta):=\mathrm{E}_{G}\left\{\prod_{j \in \mathbb{Z}} \eta\left(s_{j}\right)\right\}=\mathrm{E}_{G} \exp \left\{\int \log \eta(t) \mathrm{d} S(t)\right\} \\
& =\exp \left\{2 \lambda \int[\eta(t)-1] \mathrm{d} t+\lambda \iint[\eta(t)-1][\eta(\tau)-1] Q(\mathrm{~d} \tau, \mathrm{~d} t)\right\}
\end{aligned}
$$

Proof outline

- Step 1: conditioning on $\left(\tau_{j}\right)$:

$$
\mathrm{E}_{G}\left[e^{\sum_{i=1}^{n} \eta_{i} M\left(A_{i}\right)+\sum_{l=1}^{m} \xi_{l} N\left(B_{l}\right)} \mid\left(\tau_{j}\right)\right]=\exp \left\{\sum_{j \in \mathbb{Z}} f\left(\tau_{j}\right)\right\}
$$

where

$$
f(x):=\sum_{i=1}^{n} \eta_{i} \mathbf{1}_{A_{i}}(x)+\log \left[\sum_{l=1}^{m}\left(e^{\xi_{l}}-1\right) G\left(B_{l}-x\right)+1\right]
$$

- Step 2: the use of Campbell's formula

$$
\mathrm{E}_{G} \exp \left\{\sum_{j} f\left(\tau_{j}\right)\right\}=\exp \left\{\lambda \int_{0}^{\infty}\left[e^{f(x)}-1\right] \mathrm{d} x\right\} .
$$

Covariance measures

- Corollary 1: For any two intervals A and B one has

$$
\mathrm{E}_{G}[M(A) N(B)]=\lambda^{2}|A| \cdot|B|+\lambda Q(A, B)
$$

and for $\mathrm{d} M(\tau)=M((\tau, \tau+\mathrm{d} \tau])$ and $\mathrm{d} N(t)=N((t, t+\mathrm{d} t])$

$$
\mathrm{E}_{G}[\mathrm{~d} M(\tau) \mathrm{d} N(t)]=\lambda^{2} \mathrm{~d} \tau \mathrm{~d} t+\lambda \mathrm{d} G(t-\tau) \mathrm{d} \tau
$$

- Corollary 2: Let A_{1} and A_{2} be disjoint intervals; then

$$
\mathrm{E}_{G}\left[S\left(A_{1}\right) S\left(A_{2}\right)\right]=4 \lambda^{2}\left|A_{1}\right|\left|A_{2}\right|+\lambda\left[Q\left(A_{1}, A_{2}\right)+Q\left(A_{2}, A_{1}\right)\right]
$$

For $A_{1}=(\tau, \tau+\mathrm{d} \tau]$ and $A_{2}=(t, t+\mathrm{d} t]$ with $\tau \neq t$ one has

$$
\mathrm{E}_{G}[\mathrm{~d} S(\tau) \mathrm{d} S(t)]=4 \lambda^{2} \mathrm{~d} \tau \mathrm{~d} t+\lambda[\mathrm{d} G(t-\tau) \mathrm{d} \tau+\mathrm{d} G(\tau-t) \mathrm{d} t]
$$

- The proof is by differentiation of formulas in Propositions 1, 2.

Important corollary

- Corollary 3: For any function φ for which the integrals on the RHS are defined

$$
\begin{gathered}
\mathrm{E}_{G}\left[\iint \varphi(\tau, t) \mathrm{d} M(\tau) \mathrm{d} N(t)\right]=\mathrm{E}_{G}\left[\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \varphi\left(\tau_{j}, t_{k}\right)\right] \\
\quad=\lambda^{2} \iint \varphi(\tau, t) \mathrm{d} \tau \mathrm{~d} t+\lambda \iint \varphi(\tau, t) \mathrm{d} G(t-\tau) \mathrm{d} \tau
\end{gathered}
$$

and for $\Omega:=\{(\tau, t): \tau \neq t\}$

$$
\begin{aligned}
& \mathrm{E}_{G}\left[\iint_{\Omega} \varphi(\tau, t) \mathrm{d} S(\tau) \mathrm{d} S(t)\right]=4 \lambda^{2} \iint_{\Omega} \varphi(\tau, t) \mathrm{d} \tau \mathrm{~d} t \\
& \quad+\lambda \iint_{\Omega} \varphi(\tau, t)[\mathrm{d} G(t-\tau) \mathrm{d} \tau+\mathrm{d} G(\tau-t) \mathrm{d} t]
\end{aligned}
$$

- Expression (2) appeared in Mori (1975) who attributes it to Cox \& Lewis (1972). We will call the resulting estimator [based on (2)] the Cox-Lewis estimator.

Estimator based on $\left.(M, N)\right|_{\mathcal{T}}$

- Goal: estimate $G(I)=G(b)-G(a), I:=(a, b]$.
- Data: realization of $\left.(M, N)\right|_{\mathcal{T}}$ restricted to

$$
\begin{aligned}
& \mathcal{T}=\left[\tau_{\min }, \tau_{\max }\right] \times\left[\tau_{\min }+a, \tau_{\max }+b\right], \quad T:=\tau_{\max }-\tau_{\min } \\
& \mathscr{D}_{\mathcal{T}}=\left\{\left(\tau_{j}: \tau_{\min } \leq \tau_{j} \leq \tau_{\max }\right),\left(t_{k}: \tau_{\min }+a \leq t_{k} \leq \tau_{\max }+b\right)\right\}
\end{aligned}
$$

Estimator: Let $\varphi_{0}(\tau, t):=\mathbf{1}_{\left[\tau_{\min }, \tau_{\max }\right]}(\tau) \mathbf{1}_{I}(t-\tau)$; and

$$
\begin{aligned}
\widehat{G(I)} & :=\frac{1}{\lambda T} \iint \varphi_{0}(\tau, t) \mathrm{d} M(\tau) \mathrm{d} N(t)-\lambda|I| \\
& =\frac{1}{\lambda T} \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \mathbf{1}_{\left[\tau_{\min }, \tau_{\max }\right]}\left(\tau_{j}\right) \mathbf{1}_{I}\left(t_{k}-\tau_{j}\right)-\lambda|I| .
\end{aligned}
$$

Accuracy of $\widehat{G(I)}$

- Theorem 1: For any G the estimator $\widehat{G(I)}$ of $G(I)$ is unbiased, and

$$
\begin{aligned}
& \operatorname{var}_{G}\{\widehat{G(I)}\}=\frac{2 \lambda|I|}{T}\left\{|I|+\int_{-T}^{T} G(I+u)\left(1-\frac{|u|}{T}\right) \mathrm{d} u-\frac{|I|^{2}}{6 T}\right\} \\
& \quad+\frac{|I|}{T}+\frac{2}{T}|I| G(I)+\frac{1}{T} \int_{-T}^{T} G(I+u) G(I-u)\left(1-\frac{|u|}{T}\right) \mathrm{d} u \\
& \quad+\frac{2}{T} \int_{0}^{|I|}[G(I)+G(b-u)-G(a+u)]\left(1-\frac{u}{T}\right) \mathrm{d} u+\frac{G(I)}{\lambda T} .
\end{aligned}
$$

In the $M / G / \infty$ setting...

- In the $M / G / \infty$ setting $G(0)=0,\left[\tau_{\min }, \tau_{\max }\right]=[0, T], I=\left(0, x_{0}\right]$, so that the estimator is given by

$$
\begin{equation*}
\hat{G}\left(x_{0}\right)=\frac{1}{\lambda T} \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \mathbf{1}_{[0, T]}\left(\tau_{j}\right) \mathbf{1}_{\left[0, x_{0}\right]}\left(t_{k}-\tau_{j}\right)-\lambda x_{0} \tag{3}
\end{equation*}
$$

Theorem 2: The estimator $\hat{G}\left(x_{0}\right)$ is unbiased and

$$
\begin{array}{r}
\operatorname{var}_{G}\left\{\hat{G}\left(x_{0}\right)\right\}=\frac{2 \lambda x_{0}}{T}\left\{x_{0}+\int_{-T}^{T}\left[G\left(x_{0}+u\right)-G(u)\right]\left(1-\frac{|u|}{T}\right) \mathrm{d} u-\frac{x_{0}^{2}}{6 T}\right\} \\
+\frac{2}{T} x_{0} G\left(x_{0}\right)+\frac{1}{T} \int_{-T}^{T}\left[G\left(x_{0}+u\right)-G(u)\right]\left[G\left(x_{0}-u\right)-G(-u)\right]\left(1-\frac{|u|}{T}\right) \mathrm{d} u \\
+\frac{x_{0}}{T}+\frac{2}{T} \int_{0}^{x_{0}}\left[G\left(x_{0}\right)+G\left(x_{0}-u\right)-G(u)\right]\left(1-\frac{u}{T}\right) \mathrm{d} u+\frac{G\left(x_{0}\right)}{\lambda T} .
\end{array}
$$

Estimator based on $\left.S\right|_{\mathcal{T}}$

Theorem 3:
Let $G(0)=0, \varphi_{*}(\tau, t):=\mathbf{1}_{[0, T]}(\tau) \mathbf{1}_{\left(0, x_{0}\right]}(t-\tau)$, and

$$
\begin{aligned}
\tilde{G}\left(x_{0}\right) & =\frac{1}{\lambda T} \iint \varphi_{*}(\tau, t) \mathrm{d} S(\tau) \mathrm{d} S(t)-4 \lambda x_{0} \\
& =\frac{1}{\lambda T} \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \mathbf{1}_{[0, T]}\left(s_{j}\right) \mathbf{1}_{\left(0, x_{0}\right]}\left(s_{k}-s_{j}\right)-4 \lambda x_{0}
\end{aligned}
$$

Then $\tilde{G}\left(x_{0}\right)$ is an unbiased estimator of $G\left(x_{0}\right)$, and

$$
\operatorname{var}_{G}\left\{\tilde{G}\left(x_{0}\right)\right\}=\frac{1}{T} R_{T}^{(1)}\left(\lambda, x_{0} ; G\right)+\frac{1}{T^{2}} R_{T}^{(2)}\left(\lambda, x_{0} ; G\right)
$$

where $R_{T}^{(1)}$ and $R_{T}^{(2)}$ are positive functions satisfying
$R_{T}^{(1)}\left(\lambda, x_{0} ; G\right) \leq 76 \lambda x_{0}^{2}+36 x_{0}+\frac{1}{\lambda} G\left(x_{0}\right), \quad R_{T}^{(2)}\left(\lambda, x_{0} ; G\right) \leq 36 \lambda x_{0}^{3}$.

Remarks

- Exact expressions for $R_{T}^{(1)}\left(\lambda, x_{0} ; G\right)$ and $R_{T}^{(2)}\left(\lambda, x_{0} ; G\right)$ are available...
- Qualitatively the behavior of $\tilde{G}\left(x_{0}\right)$ is similar to that of $\hat{G}\left(x_{0}\right)$:
- the rate of convergence is parametric $O\left(\frac{1}{T}\right)$ in terms of dependence on the observation horizon T;
- the accuracy deteriorates with growth of λ and x_{0};
- if λ and T are large, the leading term is $\sim \lambda x_{0}^{2} / T$.
- No conditions on G : e.g., it can have infinite expectation.

Can we do better?

III. Estimation from the queue-length data

Queue-length data

- The queue-length (number of busy servers) process $X(t)$:

$$
X(t)=\sum_{j \in \mathbb{Z}} \mathbf{1}\left\{\tau_{j} \leq t, \sigma_{j}>t-\tau_{j}\right\}, \quad t \in \mathbb{R} .
$$

The queue-length data contains more information than the arrival-departure data:

- from observation of $\{X(t)\}$ one can reconstruct the arrival and departure epochs;
- if the arrival and departure epochs and the initial state of the system are known then the queue-length process can be reconstructed.

The available data: $\{X(k \delta), k=1, \ldots, n, T=n \delta\}$ for some small $\delta>0$.

Properties of the queue-length process

Define:

$$
\frac{1}{\mu}:=\int_{0}^{\infty}[1-G(t)] \mathrm{d} t, \quad \rho:=\frac{\lambda}{\mu}, \quad H(t):=\mu \int_{t}^{\infty}[1-G(x)] \mathrm{d} x .
$$

Proposition 3:
(a) $X(t) \sim \operatorname{Poisson}(\rho), \forall t \in \mathbb{R}$, and $\{X(t), t \in \mathbb{R}\}$ is stationary with

$$
\operatorname{cov}_{G}\{X(t), X(s)\}=\rho H(t-s), \quad \forall t, s \in \mathbb{R} .
$$

(b) Let $X=(X(\delta), \ldots, X(n \delta))$; then for any $\theta \in \mathbb{R}^{n}$

$$
\begin{aligned}
\log \mathrm{E}_{G} & {\left[\exp \left\{\theta^{T} X\right\}\right]=\rho S_{n}(\theta) } \\
S_{n}(\theta): & =\sum_{k=1}^{n}\left(e^{\theta_{k}}-1\right) \\
& +\sum_{k=1}^{n-1} H(k \delta) \sum_{m=k}^{n-1}\left(e^{\theta_{m-k+1}}-1\right) e^{\sum_{i=m-k+2}^{m} \theta_{i}}\left(e^{\theta_{m+1}}-1\right)
\end{aligned}
$$

Remarks

- Statement (a) is well known...

Statement (b) for $n=2,3$ appears in Beneš (1957), Lindley (1956). To the best of our knowledge, the case of general n is new.

- There is a nice structure in the formula:

Let $1 \leq i \leq j \leq k \leq m \leq n$; then

$$
\begin{aligned}
& \frac{1}{\rho} \ln \mathrm{E}_{G}\left[\exp \left\{\theta_{1} X_{i}+\theta_{2} X_{j}+\theta_{3} X_{k}+\theta_{4} X_{m}\right\}\right]=\sum_{i=1}^{4}\left(e^{\theta_{\ell}}-1\right) \\
& \quad+H_{j-i}\left(e^{\theta_{1}}-1\right)\left(e^{\theta_{2}}-1\right)+H_{k-i}\left(e^{\theta_{1}}-1\right) e^{\theta_{2}}\left(e^{\theta_{3}}-1\right) \\
& \quad+H_{m-i}\left(e^{\theta_{1}}-1\right) e^{\theta_{2}+\theta_{3}}\left(e^{\theta_{4}}-1\right)+H_{k-j}\left(e^{\theta_{2}}-1\right)\left(e^{\theta_{3}}-1\right) \\
& \quad+H_{m-j}\left(e^{\theta_{2}}-1\right) e^{\theta_{3}}\left(e^{\theta_{4}}-1\right)+H_{m-k}\left(e^{\theta_{3}}-1\right)\left(e^{\theta_{4}}-1\right),
\end{aligned}
$$

where the suffix notation is used $X_{i}:=X(i \delta), H_{i}:=H(i \delta)$.

Proposition 3: proof outline

- Step 1: conditioning on $\left\{\tau_{j}, j \in \mathbb{Z}\right\}$ one can show that

$$
\begin{aligned}
& \mathrm{E}_{G}\left[\exp \left\{\theta^{T} X\right\}\right]=\mathrm{E}_{G}\left[\exp \left\{\sum_{j \in \mathrm{Z}} f\left(\tau_{j}\right)\right\}\right] \\
& f(x):=\ln \left\{1+\sum_{k=1}^{m}\left[\exp \left\{\sum_{i=1}^{k} \theta_{i} \mathbf{1}\left(x \leq t_{i}\right)\right\}-1\right] \mathrm{P}_{G}\left[\sigma_{j} \in I_{k}(x)\right]\right\},
\end{aligned}
$$

where $I_{0}(x)=\left(-\infty, t_{1}-x\right], I_{m}(x)=\left(t_{m}-x, \infty\right)$, and $I_{k}(x)=\left(t_{k}-x, t_{k+1}-x\right]$ for $k=1, \ldots, m-1, t_{i}:=i \delta$.

- Step 2: Application of Campbell's formula for Poisson processes,

$$
\mathrm{E}_{G}\left[\exp \left\{\sum_{j \in \mathbb{Z}} f\left(\tau_{j}\right)\right\}\right]=\exp \left\{\lambda \int_{-\infty}^{\infty}\left[e^{f(x)}-1\right] \mathrm{d} x\right\}
$$

Idea of estimator construction

- Covariance function of $\{X(t)\}$:

$$
\begin{aligned}
R(t) & :=\operatorname{cov}_{G}\{X(s), X(s+t)\}=\rho H(t) \\
& =\rho \cdot \frac{\int_{t}^{\infty}[1-G(u)] \mathrm{d} u}{\int_{0}^{\infty}[1-G(u)] \mathrm{d} u}=\lambda \int_{t}^{\infty}[1-G(u)] \mathrm{d} u .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
1-G(t)=-\frac{1}{\lambda} R^{\prime}(t), \quad t \in \mathbb{R}_{+} . \tag{4}
\end{equation*}
$$

The idea is to estimate the first derivative of the covariance function of $X(t)$ at point x_{0}, and then recover $G\left(x_{0}\right)$ from (4).

1. Estimator construction

- Estimators of $R_{k}:=R(k \delta): \quad \hat{\rho}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, X_{i}:=X(i \delta)$,

$$
\hat{R}_{k}:=\frac{1}{n-k} \sum_{t=1}^{n-k}\left(X_{t}-\hat{\rho}\right)\left(X_{t+k}-\hat{\rho}\right), \quad k=0,1, \ldots, n-1 .
$$

Local window: for $h>0$ let $D_{x}:=[x-h, x+h], \forall x \in[h, T-h]$, and $M_{D_{x}}=\left\{k: k \delta \in D_{x}\right\}, N_{D_{x}}=\#\left\{M_{D_{x}}\right\}$.

- Differentiating filter: fix integer $\ell>0$, real $h \geq \frac{1}{2}(\ell+2) \delta$, and let $\left\{a_{k}(x), k \in M_{D_{x}}\right\}$ be the solution to

$$
\begin{array}{ll}
\min & \sum_{k \in M_{D_{x}}} a_{k}^{2}(x) \\
\text { s.t. } & \sum_{k \in M_{D_{x}}} a_{k}(x)=0, \tag{x}\\
& \sum_{k \in M_{D_{x}}} a_{k}(x)(k \delta)^{j}=j x^{j-1}, \quad j=1, \ldots, \ell .
\end{array}
$$

2. Estimator construction

- Remarks
$-h \geq \frac{1}{2}(\ell+2) \delta$ ensures at least $\ell+1$ grid points in $M_{D_{x}}$.
- The filter reproduces the first derivative of any polynomial of degree $\leq \ell$:

$$
\sum_{k \in M_{D_{x}}} a_{k}(x) p(k \delta)=p^{\prime}(x), \quad \forall p: \operatorname{deg}(p) \leq \ell
$$

- Estimator of $G\left(x_{0}\right)$:

$$
\tilde{G}_{h}\left(x_{0}\right)=1+\frac{1}{\lambda} \sum_{k \in M_{D_{x_{0}}}} a_{k}\left(x_{0}\right) \hat{R}_{k}
$$

- Two design parameters to be chosen:
degree of the fitted polynomial ℓ and window width h.

Functional class

- Local smoothness: let $\beta>0, L>0$ and $I \subset(0, \infty)$ be a closed interval containing x_{0}. We say that $G \in \mathcal{H}_{\beta}(L, I)$ if

$$
\left|G^{(\lfloor\beta\rfloor)}(x)-G^{(\lfloor\beta\rfloor)}(y)\right| \leq L|x-y|^{\beta-\lfloor\beta\rfloor}, \quad \forall x, y \in I
$$

where $\lfloor\beta\rfloor:=\max \{k \in\{0,1,2, \ldots\}: k<\beta\}$.

- Tail (moment) conditions: we say that $G \in \mathcal{M}_{p}(K)$ with $p \geq 1, K>0$ if

$$
\mathrm{E}_{G}\left[\sigma^{p}\right]=\int_{0}^{\infty} p x^{p-1}[1-G(x)] \mathrm{d} x \leq K<\infty
$$

If $G \in \mathcal{M}_{2}(K)$ then $\{H(i \delta)\}$ is summable \Rightarrow short-range dependence.

- Functional class: we consider

$$
\Sigma_{\beta}=\Sigma_{\beta}(L, I, K):=\mathcal{H}_{\beta}(L, I) \cap \mathcal{M}_{2}(K)
$$

Upper bound

- Theorem 4:

Let $I=\left[x_{0}-d, x_{0}+d\right] \subset[0,(1-\varkappa) T]$ for some $\varkappa \in(0,1)$. Let
$\tilde{G}_{*}\left(x_{0}\right)$ be the estimator $\tilde{G}_{h_{*}}\left(x_{0}\right)$ associated with

$$
\ell \geq\lfloor\beta\rfloor+1, \quad h_{*}=\left[\frac{K}{L^{2} \varkappa T}\left(1+\frac{1}{\lambda}\right)\right]^{1 /(2 \beta+2)} .
$$

If

$$
\frac{K}{L^{2} \varkappa}\left(1+\frac{1}{\lambda}\right) d^{-2 \beta-2} \leq T \leq \frac{K}{L^{2} \varkappa}\left(1+\frac{1}{\lambda}\right)\left[\frac{2}{(\ell+2) \delta}\right]^{2 \beta+2}
$$

then

$$
\sup _{G \in \Sigma_{\beta}}\left[\mathrm{E}_{G}\left|\tilde{G}_{*}\left(x_{0}\right)-G\left(x_{0}\right)\right|^{2}\right]^{1 / 2} \leq C(\ell) L^{1 /(\beta+1)}\left[\frac{K}{\varkappa T}\left(1+\frac{1}{\lambda}\right)\right]^{\beta /(2 \beta+2)} .
$$

Remarks

- Under local smoothness and second moment conditions:

$$
\begin{aligned}
\operatorname{Risk}_{x_{0}}\left[\tilde{G}_{*} ; \Sigma_{\beta}\right] & :=\sup _{G \in \Sigma_{\beta}}\left[\mathrm{E}_{G}\left|\tilde{G}_{*}\left(x_{0}\right)-G\left(x_{0}\right)\right|^{2}\right]^{1 / 2} \\
& \asymp C\left[\frac{1}{T-x_{0}}\left(1+\frac{1}{\lambda}\right)\right]^{\beta /(2 \beta+2)}, \quad T \rightarrow \infty .
\end{aligned}
$$

- The rate of convergence is nonparametric, but dependence on λ and x_{0} is "weak".
- What about optimality of this estimator?

Gaussian approximation in heavy traffic

- Corollary to Proposition 3:

Let $\left\{M_{\ell} / G / \infty, \ell=1,2, \ldots\right\}$ be a sequence of the $M / G / \infty$ systems with fixed G and arrival rates $\lambda_{\ell}=\ell \lambda, \lambda>0$. Let $X_{\ell}^{n}=\left(X_{\ell}(\delta), \ldots, X_{\ell}(n \delta)\right)$ be observations of the queue-length process in the ℓ th system; then

$$
\frac{X_{\ell}^{n}-\ell \rho e_{n}}{\sqrt{\ell \rho}} \xrightarrow{d} \mathcal{N}_{n}(0, V(H)), \quad \ell \rightarrow \infty
$$

where $\rho=\frac{\lambda}{\mu}, e_{n}=(1, \ldots, 1) \in \mathbb{R}^{n}, V(H)=\{H((i-j) \delta)\}_{i, j=1, \ldots, n}$.
This result is in line with general results of Borovkov (1967), Iglehart (1973) and Whitt (1974) on weak convergence for queues.

A Gaussian model

- In heavy traffic $\{X(t)\}$ is close to a stationary Gaussian process. By (4), in the heavy traffic limit, $1-G$ is the negative derivative of the covariance function.
- A problem for stationary Gaussian process:

Let $\{X(t), t \in \mathbb{R}\}$ be a stationary Gaussian process with zero mean and covariance function γ. We observe $X^{n}=(X(\delta), \ldots, X(n \delta)), t_{i}=i \delta, i=1, \ldots, n, n \delta=T$.

- The goal is to estimate $\theta=\gamma^{\prime}\left(x_{0}\right)$ using observation X^{n}. We are mainly interested in lower bounds on the minimax risk

$$
\operatorname{Risk}_{x_{0}}^{*}[\Gamma]=\inf _{\hat{\theta}} \sup _{\gamma \in \Gamma}\left[\mathrm{E}_{\gamma}\left|\hat{\theta}-\gamma^{\prime}\left(x_{0}\right)\right|^{2}\right]^{1 / 2}
$$

where Γ is a suitable class of covariance functions.

Lower bound in the Gaussian problem

- Definition: Let $I=\left[x_{0}-d, x_{0}+d\right], L>0$ and $\beta>0$. We say that $\gamma \in \Gamma_{\beta}:=\Gamma_{\beta}(L, I, K)$ if
(i) $\int_{-\infty}^{\infty}|\gamma(t)| \mathrm{d} t \leq K<\infty$;
(ii) γ is $\ell:=\max \{k \in \mathbb{N}: k<\beta+1\}$ times continuously differentiable on I and

$$
\left|\gamma^{(\ell)}(x)-\gamma^{(\ell)}(y)\right| \leq L|x-y|^{\beta+1-\ell}, \quad \forall x, y \in I
$$

- Theorem 5:

There exist positive constants C_{1}, C_{2} and c depending on β, x_{0}, d and K only such that if

$$
C_{1} \delta^{-2} \leq T, \quad L^{2} T \leq C_{2} \delta^{-2 \beta-2}
$$

then

$$
\liminf _{T \rightarrow \infty}\left\{L^{-1 /(\beta+1)} T^{\beta /(2 \beta+2)} \operatorname{Risk}_{x_{0}}^{*}\left[\Gamma_{\beta}\right]\right\} \geq c>0
$$

Remarks

- The lower bound in the Gaussian model strongly suggests that the "queue-length "-based estimator is rate optimal in the heavy traffic regime...
- In the original model derivation of lower bounds on the risk is difficult because of the dependence structure. The distribution of observations is not available in a usable form.
IV. Comparison of estimators of G

Three estimators of G

Monotonized and confined to $[0,1]$ versions of the estimators:

- The Cox-Lewis estimator

$$
\hat{G}_{\mathrm{CL}}\left(x_{0}\right)=\frac{1}{\lambda T} \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \mathbf{1}_{[0, T]}\left(\tau_{j}\right) \mathbf{1}_{\left[0, x_{0}\right]}\left(t_{k}-\tau_{j}\right)-\lambda x_{0}
$$

- Local polynomial estimator:

$$
\hat{G}_{\mathrm{LP}}\left(x_{0}\right)=1+\frac{1}{\lambda} \sum_{k \in M_{D_{x_{0}}}} a_{k}\left(x_{0}\right) \hat{R}_{k}
$$

Brown's estimator:

$$
\hat{G}_{B}\left(x_{0}\right)=1-e^{\lambda x_{0}} \frac{\sum_{k \in \mathbb{Z}} \mathbf{1}_{\left(x_{0}, \infty\right)}\left(z_{k}\right) \mathbf{1}_{[0, T]}\left(t_{k}\right)}{\sum_{k \in \mathbb{Z}} \mathbf{1}_{[0, T]}\left(t_{k}\right)}
$$

Numerical experiments

- The goal: study influence of the arrival rate λ and the tail of G on accuracy.
- Experiment 1: $T=1000, G(x)=1-e^{-x}, \lambda \in\{0.5,1,5,15\}$. The distribution G is estimated at equidistant points on $[0,4]$.
- Experiment 2: $T=1000, \lambda=1, G(x)=1-e^{-\mu x}$ with $\mu \in\left\{\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \frac{1}{15}\right\}$. The distribution G is estimated at equidistant points on [0,10].
- The bandwidth of $\hat{G}_{\mathrm{LP}}\left(x_{0}\right)$ was chosen minimal, $h=3 \delta$.
- In both experiments we compute the maximal error

$$
\operatorname{Err}\{\hat{G}\}=\max _{x \in\left\{x_{i}\right\}}|\hat{G}(x)-G(x)|, \quad \hat{G} \in\left\{\hat{G}_{\mathrm{CL}}, \hat{G}_{\mathrm{LP}}, \hat{G}_{\mathrm{B}}\right\}
$$

over 100 simulation runs.

Experiment 1: typical realizations

(a) $\lambda=0.5$

(c) $\lambda=5$

(b) $\lambda=1$

(d) $\lambda=15$

Experiment 1: accuracy boxplots

(a) $\lambda=0.5$

(c) $\lambda=5$

(b) $\lambda=1$

(d) $\lambda=15$

Experiment 2: typical realizations

(a) $\mu=\frac{1}{2}$

(c) $\mu=\frac{1}{10}$

(b) $\mu=\frac{1}{5}$

(d) $\quad \mu=\frac{1}{15}$

Experiment 2: accuracy boxplots

(a) $\mu=\frac{1}{2}$

$(c) \quad \mu=\frac{1}{10}$

(b) $\quad \mu=\frac{1}{5}$

(d) $\quad \mu=\frac{1}{15}$

Comparison of estimators

- Experiment 1:
- \hat{G}_{CL} and \hat{G}_{B} behave poorly for large values of λ and x_{0}. In particular, \hat{G}_{B} is completely upset for $\lambda=15$, although it behaves well for small $\lambda . \hat{G}_{\text {CL }}$ exhibits more variability than \hat{G}_{B}.
- \hat{G}_{LP} is stable and even improves with growth of λ.
- Experiment 2:
- Accuracy of all estimators is badly affected by heavy tails of $G . \hat{G}_{\mathrm{B}}$ is most sensitive, and \hat{G}_{LP} is most stable.
V. Estimation of service time expectation and arrival rate

Estimation of service time expectation

- Estimation from the arrival-departure data Let $\alpha:=\frac{1}{\mu}=\mathrm{E}_{G}[\sigma]$, and \hat{G} be the Cox-Lewis estimator of G. For $b>0$ let

$$
\hat{\alpha}=\int_{0}^{b}[1-\hat{G}(t)] \mathrm{d} t
$$

Let $\mathcal{M}_{p}(A)$ be the set of distributions with p th moment $\leq A$,

$$
\mathcal{M}_{p}(A):=\left\{G: p \int_{0}^{\infty} x^{p-1}[1-G(x)] \mathrm{d} x \leq A<\infty\right\}, p>1
$$

Theorem 6: Let $\hat{\alpha}_{*}$ be the estimator associated with $b=b_{*}:=(A / p)^{1 /(p+1)}(T / \lambda)^{1 /(2 p+2)}$. Then for all $T \geq \lambda\left(1 \vee \lambda^{-2}\right)^{2 p+2}(A / p)^{2}$ one has

$$
\sup _{G \in \mathcal{M}_{p}(A)} \mathrm{E}_{G}\left|\hat{\alpha}_{*}-\alpha\right|^{2} \leq C\left(\frac{A}{p}\right)^{4 /(p+1)}\left(\frac{\lambda}{T}\right)^{(p-1) /(p+1)},
$$

where C is an absolute constant.

Remarks

- The rate of convergence is nonparametric, $O\left(T^{-\frac{p-1}{2 p+2}}\right)$.

We were not able to construct an estimator whose risk converges at faster rate.

- Estimation of α from the queue-length data is immediate:

$$
\tilde{\alpha}=\frac{\hat{\rho}}{\lambda}=\frac{1}{\lambda n} \sum_{i=1}^{n} X_{i}, \quad X_{i}:=X(i \delta) .
$$

It is easy to verify that

$$
\sup _{G \in \mathcal{M}_{p}(A)} \mathrm{E}_{G}|\tilde{\alpha}-\alpha|^{2} \leq \frac{C(A, p) \alpha}{\lambda T}
$$

Even though the difference between observations schemes (A) and (C) is only in the initial state of the queue, the results are completely different!

Estimation of arrival rate

- Arrival-departure data the problem is trivial: equivalent to estimating parameter of exponential distribution from i.i.d. samples.
- Continuous-time queue-length data the same as for arrival-departure data:

$$
\begin{aligned}
& \hat{\lambda}^{+}=\frac{1}{T} \cdot \#\{t \in(0, T]: X(t)-X(t-)=1\} \\
& \hat{\lambda}^{-}=\frac{1}{T} \cdot \#\{t \in(0, T]: X(t)-X(t-)=-1\}
\end{aligned}
$$

It is immediate to show that

$$
\mathrm{E}_{G, \lambda}\left|\hat{\lambda}^{+}-\lambda\right|^{2}=\mathrm{E}_{G, \lambda}\left|\hat{\lambda}^{-}-\lambda\right|^{2}=\lambda T^{-1}, \quad \forall \lambda, \forall G
$$

What about discrete observations of the queue-length process?

1. Estimation of arrival rate λ

- Problem: estimate λ from $X^{n}=\{X(k \delta), k=1, \ldots, n\}$.
- Recall (4): if $R(x)=\operatorname{cov}_{G}\{X(t), X(t+x)\}$ then

$$
1-G(x)=-\frac{1}{\lambda} R^{\prime}(x) \Rightarrow \lambda=-R^{\prime}(0)
$$

- Estimator: If $\hat{R}_{k}:=\frac{1}{n-k} \sum_{t=1}^{n-k}\left(X_{t}-\hat{\rho}\right)\left(X_{t+k}-\hat{\rho}\right), D_{0}=[0,2 h]$, and $\left\{a_{k}(0), k \in M_{D_{0}}\right\}$ is the solution to $(\operatorname{Opt}(0))$ then we put

$$
\hat{\lambda}:=-\sum_{k \in M_{D_{0}}} a_{k}(0) \hat{R}_{k}
$$

Estimator depends on design parameters h and ℓ.

2. Estimation of arrival rate λ

- Theorem 7: Let $I=[0,2 d]$, and let $\hat{\lambda}_{*}$ be the estimator associated with $\ell \geq\lfloor\beta\rfloor+1$, and $h=h_{*}:=\left[\frac{K}{L^{2} T}\right]^{1 /(2 \beta+2)}$. Let $K L^{-2} d^{-2 \beta-2} \leq T \leq K L^{-2}\left[\frac{2}{(\ell+2) \delta}\right]^{2 \beta+2}$; then
$\sup _{G \in \Sigma_{\beta}(L, I, K)}\left[\mathrm{E}_{\lambda, G}|\hat{\lambda}-\lambda|^{2}\right]^{1 / 2} \leq C(\ell)\left(\lambda^{2}+\lambda\right)^{1 / 2} L^{1 /(\beta+1)}\left[\frac{K}{T}\right]^{\beta /(2 \beta+2)}$.
- The proof coincides with that of Theorem 4.
- For discrete observations accuracy of $\hat{\lambda}^{ \pm}$is poor: one can show that

$$
\mathrm{E}_{\lambda, G}\left|\hat{\lambda}^{ \pm}-\lambda\right|^{2} \leq C\left\{\lambda^{4} \delta^{2}+\lambda^{2}\left[\frac{1}{\delta} \int_{0}^{\delta} G(x) \mathrm{d} x\right]^{2}+\frac{\lambda}{T}\right\}
$$

Thus, $\hat{\lambda}$ may be preferable...

VI. Conclusion

A quote

- David R. Cox in "Some problems of statistical analysis connected with congestion", published in 1965, reviews some statistical problems for queues and writes:
"There are a very large number of papers on particular probabilistic models for queues and, by comparison, extremely few papers on the corresponding problems of statistical analysis."
"When a simple mathematical model is investigated primarily to get qualitative insight..., the statistical problems are not so relevant. When, however,... a practical congestion problem is tackled..., non-trivial statistical problems arise."
- The first statement is still true...
- Statistical research for queueing models is important, today even much more important than in the past...

1. Concluding remarks

- With abundance of data on service systems, statistical inference for stochastic models becomes more and more important...
- Statistical problems are challenging even for simplest queueing models:
- observations are dependent;
- joint distributions of observations are not available in a usable form...
- Fundamental statistical problem

How to judge optimality of estimators in models in which joint distribution of observations is not available?

2. Concluding remarks

There are very few results on accuracy of statistical procedures for queueing models.

- Even for simplest models many questions are unanswered.

For instance, in the $M / G / \infty$ model

- test for exponentiality of $G(M / M / \infty$ queue);
- detect changes in arrival rate to the $M / G / \infty$ queue;
- estimate nonparametrically the arrival rate to the $M_{t} / G / \infty$ queue;
- ...
- Other queueing models?

