

Big data in daily manufacturing operations

Ivo Adan

Joint work with

Tim Wilschut and Joep Stokkermans

Where innovation starts

Big Data and Smart Industry

- ICT and robotization are changing the manufacturing industry: the fourth industrial revolution
- Internet of Things: Products, machines, factories, warehouses, customers are able to exchange information!
- Challenge: Fully exploit this network to improve processes and to develop innovative products and services!
- National initiative: Smart Industry

• This project is example of smart use of information

Semi-conductor manufacturing

Semi-conductor manufacturing

• Focus on die assembly (die bonding, wire bonding, molding)

NXP Assembly Plant in Guandong China

- Advanced Warning and data Collection System (AWACS) collects 26 GB's of data/day (100 Oxford dictionaries!)
- Is it possible to increase Overall Equipment Efficiency (OEE) by exploiting Big Data?

NXP Assembly Plant in Guandong China

- Production characteristics
 - High speed production: Thousands of products are produced per machine per hour
 - High volume production: Millions of products per day
- Due to scale of operations: Difficult to get a grasp of "What is happening?"
- Manually monitoring and processing data is labor intensive and inefficient
- Develop software tool to give clues to basic operational questions like:
 - How is production going?
 - Where is what attention required?
 - Which action has priority?
- To answer first two questions: Data should be filtered on dedicated metrics (OEE)
- To answer third question: Intelligent data mining is required (Fluid flow simulation model)

Project objectives

In order to support factory maintenance teams in prioritizing their activities

- Design and develop data analysis software for every day use in manufacturing operations
- Investigate the suitability of a fluid simulation model to conduct "what if" analysis, such as
 - What can be gained in terms of throughput if certain machine errors are solved?

Data collection

- AWACS collects state events of equipment with corresponding times stamps
- Machine states
 - Production: Machine is producing
 - Standy: Machine could be producing but is not
 - Down: Machine cannot produce

The software

Three level Graphical User Interface since "different management levels require different information"

- Heads Up Display: General overview of complete production floor
 - How is production going?
 - Where is attention required?

Target user group: Production managers, quality managers, maintenance managers

- Cockpit: Line analysis tool
 - What happened on this production line?
 - What should I do first?

Target user group: Production supervisors, maintenance supervisors

• Engine: Equipment specific information Target user group: Maintenance engineers, technicians

The software

The software: Heads Up Display

			Г	4. Drop down menu to select additional para	ameter: Thro	oughput, as	ssist time	e, down t	ime		
				 5. Clues; Information which could expl 	lain bad perf	ormance	D				
🕖 Untitled	-	-	-			- 6. Ciue I	Bullon, s	cans ior	specia	revents (long powerdown states etc.)	
The Heads U	Jp Display—										
Line Number	: OEE [%]	Q-Indicator	upm	• Clues		Line Number:	OEE [%]	Q-Indicator	upm	Clues	
M001	76		292	A1 BLOSS 10.7%; A2 DOWN 12.1%; A2 Setup 6.1%;	c	M017	58.4	1999 - N. 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199	292	P3 SLOSS 42.2%; MP DOWN 24.4%; MP Halt 24.4%; A4 Pwrdn 8.5%	c
M002	86.4	×	285		c	M018	49.2	X	278	A3 SLOSS 44.7%;	c
M003	94.2	×	288		c	M019	95	×	289		с
M004	89.6	×	296		c	M020	28.7	×	91	P4 SLOSS 66.3%;	c
M005	78.6	•	294	P2 SLOSS 5.8%; A1 DOWN 100%; A1 Halt 100%;	c	M021	15.7	×	49		с
M006	90.2	×	288		c	M022	0	×	0	A2 SLOSS 99.6%; MP DOWN 100%; P1 Halt 100%; MP Pwrdn 100%	с
M007	0	•	0	P1 SLOSS 100%; A4 DOWN 31%; A4 Pwrdn 29.2%	c	M023	0	1 × 1	0	A1 DOWN 100%; MP Halt 100%; A1 Pwrdn 100% A2 Setup 100%;	c
M008	90.1	×	285		c	M024	88.2	×	378		c
M009	0	×	0	P2 SLOSS 32.1%; MP DOWN 100%; MP Setup 100%;	с	M025	87.6	×	273		c
M010	88.3	×	284		c	M026	85.3	- x	271		c
M011	80.9	×	296		c	M027	41.1	×	293	A4 SLOSS 8.9%; P4 DOWN 46.5%; P4 Halt 46.5%; A4 Setup 12.3%;	с
M012	75.9	•	285	P1 SLOSS 18.4%; MP DOWN 100%; MP Pwrdn 100%	c	M028	1.3	×	4	A4 SLOSS 99.2%;	c
M013	83.2	×	281		c	M029	91.4	×	285		с
M014	80.7	×	288		c	M030	84	1 × 1	286		с
M015	74.3	×	287	P1 SLOSS 18.7%;	c	M031	79.5	×	289	A2 SLOSS 99.9%;	с
M016	68.3	×	245	P2 SLOSS 39.4%; A3 DOWN 100%; A3 Setup 100%;	с	M032	94	- x	285		c
Settings	Heads	Up Report		Update	Last Update:	29-May-201	3 23:00:00	Number	of shifts:	1	eator: T.Witschut
						10. End of last shift in data					

TU/e Technische Universiteit Eindhoven University of Technology

The software: Cockpit

The software: Engine

└── 5. High Lighted Cluster Type

Fluid flow simulation model

- Discrete flow of products through assembly line is modelled as continuous fluid flow
- Natural due to high production rates: products literally flow through equipment
- Production line consists of nine machines m_1, \ldots, m_9 , in series separated by finite buffers b_1, \ldots, b_8

- Buffer content is continuous
- Machine states are discrete
- Machine up and down time distributions are fitted to data
- Model describes interactions between machines in the assembly line

Validation of fluid flow simulation model

	Absolute Error [%]						
#Shifts	1	3	6	12	18		
Data set 1	5.43	0.01	4.74	1.43	3.78		
2	9.60	7.88	5.14	0.82	18.34		
3	1.81	0.53	3.26	8.29	0.34		
4	10.2	1.07	1.99	3.59	1.56		
5	6.58	3.33	0.73	4.71	3.29		
6	14.8	6.07	4.38	2.55	3.52		
7	8.27	0.83	2.49	3.97	3.46		
8	13.5	2.49	1.59	3.03	6.28		
9	7.90	2.99	2.66	3.25	5.92		
10	11.3	3.24	0.15	8.45	2.58		
Average Error	8.93	2.84	2.72	4.01	4.91		
Maximum Eror	14.8	7.88	5.14	8.45	18.3		

- On average the simulation model has an accuracy > 95% if the data set is ≥ 3 shifts
- However, in the presence of rare events (such as long power downs) the simulation model is not accurate

Setting maintenance priorities

- Maintenance capacity is limited so priorities need to be set!
- Simulation model is used to help set these priorities
 - Estimate the effect of removing an error from the system in terms of throughput gain
 - Removing certain errors from the event list of a machine modifies both up and down times

Estimating throughput gain

• Throughput gain is estimated by comparing "base simulation" with "what if" simulation

Date	17-04	4-13	19-04	4-13	28-04-13		
Machine	Error type	Gain [%]	Error type	Gain [%]	Error type	Gain [%]	
1	28-702	0.11	40-702	0.02	28-552	0.00	
2	30-709	0.18	40-702	0.06	30-703	0.00	
3	30-34	0.07	40-703	0.05	30-703	0.14	
4	28-702	0.22	40-703	0.04	30-703	0.00	
5	40-144	0.14	40-145	0.04	40-351	0.00	
6	40-145	0.05	40-356	0.61	40-135	1.91	
7	40-359	0.04	40-135	1.10	40-144	1.93	
8	40-139	1.74	40-356	0.88	40-144	0.00	
9	20-165	0.06	20-177	0.16	20-177	0.00	

• On different days different error-types are dominant

Conclusions and remarks

- Effective integration of data analysis and simulation
- Maintenance crew can better focus their attention and set priorities
- Fluid flow simulation model can accurately predict production line behavior
 - Fluid model has also been used for packaging lines at Heineken (line configuration)

- Use chronological list of up and down time events as input to the simulation model
- Few percent increase in the Overall Equipment Efficiency within the first few months after implementation!