Performance analysis of zone picking systems

Ivo Adan, Jelmer van der Gaast, René de Koster, Jacques Resing

TU/e
Technische Universiteit Eindhoven
University of Technology

Thursday 29 November
Zone-picking systems

- Popular order-picking system
- Storage area divided in order-picking zones
- Reduction of walking distances and congestion in aisles
- Flexible capacity and high-throughput ability
- Fit-for-use for a wide range of products and order profiles
Motivation

- Develop **fast and accurate** method to predict performance:
 - utilization of pick stations
 - system throughput
 - order lead time

- Method to **support design decisions**:
 - layout of the network
 - size of zones
 - location of items
 - number of pickers and zones
 - WIP level
Zone-picking systems
Zone-picking systems
Zone-picking systems
Zone-picking systems

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5
Zone 6
Zone 7
Zone 8
Segment 1
Segment 2
Zone-picking systems

Pick-by-voice

Pick-by-light
Zone-picking systems
Zone-picking systems
Zone-picking systems
Zone-picking systems

/department of mechanical engineering
Zone-picking systems
Zone-picking systems

Disadvantage:

- congestion and blocking under heavy use
- leads to recirculation and long order lead times

Modeling:

- blocking is crucial aspect!
- describe elements (transport, zones) as network of queues

Method of analysis: queueing theory

Needed?
Pickers are equally fast, 10 circulating totes

Question: Replace one picker by a picker that is twice as fast. How does this affect mean order lead time? Throughput?

Question: Does your answer change in case of more totes? Less totes?
Multiple pickers or a single one?

4 pickers, or one picker that is four times faster?

Question: What do you prefer, 4 pickers or one fast picker?

Question: What do you prefer if pick time variability is high?

Question: What do you prefer if the load is low?
Multiple pickers or a single one?

4 pickers, or one picker that is four times faster?

The mean order lead time can be predicted by...

\[E(S) \approx \frac{\Pi W}{1 - \rho} \frac{E(R)}{c} + E(B) \]
Layout of single-segment

Storage
Buffer
Zone

Weight check

System entrance/exit

Recirculation

Tote

Order picker
Modeling of single-segment

- \(N \) is number of totes
- \(M \) is number of zones
- \(\mathcal{S} \) is set of nodes; three types
 1. Entrance/exit, \(e \)
 2. Zones, \(\mathcal{Z} = \{z_1, \ldots, z_M\} \)
 3. Conveyors, \(\mathcal{C} = \{c_1, \ldots, c_{M+1}\} \)
- Each tote has class \(r \subseteq \mathcal{Z} \) of zones to be visited, for example, \(r = \{z_2, z_3\} \)
Closed queueing network with $\mathcal{C} = \{c_1, c_2, c_3\}$ and $\mathcal{Z} = \{z_1, z_2\}$
• **Entrance node** releases new totes one-by-one of class r with probability ψ_r at exponential rate μ_e

• **Conveyor nodes** are delay nodes with a fixed delay of rate μ_i

• **Zones** have:

 – $d_i \geq 1$ order pickers

 – Exponential pick times with rate μ_i

 – Finite buffers of size q_i
Analysis of single-segment

- Distribution of network is **intractable**: Approximate!
- tote jumps over full zone and proceeds **as if** zone has been visited...
- Jump-over network has product-form solution!

- Flows of jump-over network should match with block-and-recirculate:

 passing tote is labeled z_i **not visited** with probability b_{z_i} and labeled z_i **visited** otherwise, independent of whether the tote visited z_i or not

- b_{z_i} is blocking probability in block-and-recirculate network: Unknown!
Theorem:
Jump-over network has product-vorm stationary distribution:

\[
\pi(\bar{x}) = \frac{1}{G} \prod_{i \in S} \left(\frac{V_i}{\mu_i} \right)^{\bar{x}_i} \prod_{i \in C} \frac{1}{\bar{x}_i!} \prod_{i \in Z} \frac{1}{\gamma_i(\bar{x}_i)}
\]

where
- \(\bar{x}_i\) number of totes in node \(i\)
- \(G\) is normalizing constant
- \(V_i\) visiting frequency to node \(i\)
- \(\gamma_i\) is (queue dependent) service rate multiplier

Hence:
Jump-over network can be exactly evaluated by Mean Value Analysis (MVA)
Arrival theorem for closed queueing network:

Blocking probability b_{zi} of zone z_i is equal to:

$$b_{zi} = \pi_{zi} \left(d_{zi} + q_{zi} |N - 1\right),$$

where $\pi_{zi}(k|N)$ probability of k totes in zone z_i in network with N totes

Remark:
Probabilities $\pi_{zi}(k|N)$ can be calculated recursively (over N) by MVA
Analysis of single-segment

- **Step 0:**
 Initialize \(b_{zi}^{(0)} = 0 \) and \(j = 0 \)

- **Step 1:**
 Calculate by means of MVA:
 1. Mean order lead times and throughput
 2. Distribution of totes per node

- **Step 2:**
 \(j = j + 1 \) and estimate new blocking probabilities
 \[b_{zi}^{(j)} = \pi_{zi} (d_{zi} + q_{zi} | N - 1) \]

- **Step 3:**
 Return to Step 1 until \(|b_{zi}^{(j)} - b_{zi}^{(j-1)}| < \epsilon \)
Results for single-segment

Parameters single-segment test set (9600 cases)

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of zones</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
<tr>
<td>Number of totes</td>
<td>10,20,30,40,50,60,70,80</td>
</tr>
<tr>
<td>Transport mean of conveyors</td>
<td>20,30,40,50,60</td>
</tr>
<tr>
<td>Service mean of zones</td>
<td>10,15,20,25,30</td>
</tr>
<tr>
<td>Buffer size of zones</td>
<td>0,1</td>
</tr>
<tr>
<td>Number of order pickers</td>
<td>1,2,3</td>
</tr>
</tbody>
</table>
Results for single-segment

<table>
<thead>
<tr>
<th>Zones</th>
<th>Error (%) in system throughput</th>
<th>Error (%) in circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg.</td>
<td>SD.</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.67</td>
<td>0.84</td>
</tr>
<tr>
<td>3</td>
<td>0.78</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>0.73</td>
<td>1.05</td>
</tr>
<tr>
<td>5</td>
<td>0.64</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>0.54</td>
<td>0.91</td>
</tr>
<tr>
<td>7</td>
<td>0.45</td>
<td>0.81</td>
</tr>
<tr>
<td>8</td>
<td>0.38</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Layout of multi-segment
Modeling of multi-segment

- K is number of segments
- N is number of totes
- N^k is maximum number of totes in segment k
- M is number of zones
- \mathcal{S} is set of nodes; three types
 1. Entrance/exit nodes, $\mathcal{E} = \{e_0, e_1, \ldots, e_K\}$
 2. Zones, $\mathcal{Z} = \bigcup_{k=1}^{K} \mathcal{Z}^k$, $\mathcal{Z}^k = \{z^k_1, \ldots, z^k_{m^k}\}$
 3. Conveyors, $\mathcal{C} = \bigcup_{k=0}^{K} \mathcal{C}^k$, $\mathcal{C}^0 = \{c^0_1, \ldots, c^0_{K+1}\}$ and $\mathcal{C}^k = \{c^k_1, \ldots, c^k_{m^k+1}\}$
- Each tote has class $r \subseteq \mathcal{Z}$ of zones to be visited, for example, $r = \{z^1_2, z^2_3\}$
Corresponding closed queueing network
Analysis of multi-segment

- Blocking at two levels:
 1. when zone is full
 2. when segment is full

- Jump-over network:

 passing tote is labeled segment k not visited with prob B_k, and labeled segment k visited, independent of whether tote visited segment k or not

- B_k is blocking probability of segment k in block-and-recirculate network: Unknown!
Analysis of multi-segment

Aggregation:

Replace segments by flow equivalent servers, with rates

\[\mu_{FES_k}(n) = X^k(n), \quad n = 1, \ldots, N^k, \quad k = 1, \ldots, K \]

where \(X^k(n) \) is throughput of segment \(k \) in isolation
Aggregation of multi-segment

Segments replaced by flow equivalent servers
Aggregation van multi-segment

- Norton’s theorem:
 Aggregate network has same performance as jump-over network

- Analysis of aggregate network same as one of single-segment network!

- Arrival theorem:
 Blockings probability B_k of segment k is equal to:

 $$B_k = \prod_k (N^k|N - 1),$$

 where $\prod_k(n|N)$ is probability of n totes in segment k in network with N totes
Analysis of multi-segment

- **Step 0:**
 Initialize \(b_{z_i}^{(0)} = B_k^{(0)} = 0 \) and \(j = 0 \)

- **Step 1:**
 Calculate for aggregate network and each segment by MVA:
 1. Mean order lead times and throughput
 2. Distribution of totes per node

- **Step 2:**
 \(j = j + 1 \) and estimate new blocking probabilities
 \[
 b_{z_i}^{(j)} = \pi_{z_i} \left(d_{z_i} + q_{z_i} | N - 1, N^k - 1 \right), \quad B_k^{(j)} = \Pi_k (N^k | N - 1)
 \]

- **Step 3:**
 Return to Step 1 until \(\left| b_{z_i}^{(j)} - b_{z_i}^{(j-1)} \right| < \epsilon \) and \(\left| B_k^{(j)} - B_k^{(j-1)} \right| < \epsilon \)
Results for multi-segment

Example using real-life data of large Dutch wholesaler of non-food:

- 4 segments
- 3 pick-by-light segments with each 2×4 zones
- 1 pallet pick with 3 zones
- Total:
 1. 24 pick-by-light zones
 2. 3 pallet pick zones

Compare 3 storage strategies:

1. Minimize expected number of segments to be visited (Current).
2. Balance work-load over segments (Balanced).
3. Random storage (Random).
Results for multi-segment

\[X(N) = (h-1) \]
Conclusions

- Zone-picking system can be described by:

 closed multi-class queueing network with block-and-recirculate blocking

- Network can be approximated by jump-over network

- Excellent and fast estimates of performance by MVA and Norton