Optimizing Admission Control in Balanced Networks

Matthieu Jonckheere1,
Joint work with Jean Mairesse 2

1Technical University of Eindhoven, 2LIAFA, CNRS, Paris

YEQT III, november 2009
Virtues of the Erlang formula

- Robustness: insensitivity to fine traffic statistical properties.
- Computationally simple:

Recursive formula

Consider a birth and death process on \{0, 1, \ldots, y\} with birth rates \(\nu \) and death rates \(\phi(x) \), then the blocking probability (probability to be in state \(y \)) can be recursively evaluated as follows:

\[
B(y)^{-1} = 1 + \frac{\phi(y)}{\nu} B(y - 1)^{-1}.
\] (1)
Virtues of the Erlang formula

- Robustness: insensitivity to fine traffic statistical properties.
- Computationally simple:

Recursive formula

Consider a birth and death process on \(\{0, 1, \ldots, y\} \) with birth rates \(\nu \) and death rates \(\phi(x) \), then the blocking probability (probability to be in state \(y \)) can be recursively evaluated as follows:

\[
B(y)^{-1} = 1 + \frac{\phi(y)}{\nu} B(y - 1)^{-1}.
\] (1)
Following Erlang’s steps

From a trunk to networks
- Loss networks, (Gibbens, Kelly, Ross...)
- Bandwidth sharing networks, (Roberts, Massoulie, Bonald, Proutiere, Virtamo...)

We aim at obtaining performance evaluation formula and optimization tools for multi-class networks with admission control and load balancing, restricting the set of policies to the ones being:
- robust,
- recursively computable.
Following Erlang’s steps

From a trunk to networks

- Loss networks, (Gibbens, Kelly, Ross...)
- Bandwidth sharing networks, (Roberts, Massoulie, Bonald, Proutiere, Virtamo...)

We aim at obtaining performance evaluation formula and optimization tools for multi-class networks with admission control and load balancing, restricting the set of policies to the ones being:

- robust,
- recursively computable.
Model

Network model

Network with a finite set of processor sharing nodes I. I is partitioned into finitely many non-empty subsets I_k, $k \in K$, each customer has a class which is an element of K, and a customer of class k has to be served by one of the nodes in I_k.

The process of the number of customers X a continuous-time birth and death process, on a finite, coordinate-convex state space \mathcal{X}, with infinitesimal generator $Q = (q(x, y))_{x, y \in \mathcal{X}}$ given by: $\forall x \in \mathcal{X}$,

$$
\begin{align*}
q(x, x - e_i) &= \phi_i(x) \quad \text{if } x - e_i \in \mathcal{X} \\
q(x, x + e_i) &= \lambda_i(x) \quad \text{if } x + e_i \in \mathcal{X} \\
q(x, y) &= 0 \quad \text{if } y \in \mathcal{X}, \ y \neq x - e_i, x + e_i.
\end{align*}
$$

The scalars $\lambda_i(x)$ define the routing/admission policy.
Model

Network model

Network with a finite set of processor sharing nodes \(\mathcal{I} \). \(\mathcal{I} \) is partitioned into finitely many non-empty subsets \(\mathcal{I}_k, k \in \mathcal{K} \), each customer has a class which is an element of \(\mathcal{K} \), and a customer of class \(k \) has to be served by one of the nodes in \(\mathcal{I}_k \).

The process of the number of customers

\(X \) a continuous-time birth and death process, on a finite, coordinate-convex state space \(\mathcal{X} \), with infinitesimal generator \(Q = (q(x, y))_{x,y \in \mathcal{X}} \) given by: \(\forall x \in \mathcal{X} \),

\[
\begin{align*}
q(x, x - e_i) &= \phi_i(x) \quad \text{if } x - e_i \in \mathcal{X} \\
q(x, x + e_i) &= \lambda_i(x) \quad \text{if } x + e_i \in \mathcal{X} \\
q(x, y) &= 0 \quad \text{if } y \in \mathcal{X}, \; y \neq x - e_i, x + e_i.
\end{align*}
\]

(2)

The scalars \(\lambda_i(x) \) define the routing/admission policy.
Total routing intensity

Arrival intensities constraints

$$\forall k \in K, \quad \sum_{i \in I_k} \lambda_i(x) \leq \nu_k$$ \hspace{1cm} (3)

Maximum total routing intensity

The intensity $h : \mathcal{X} \rightarrow \mathbb{R}^*_+$ of a routing is defined by

$$h(x) = \sum_{i \in I} \lambda_i(x).$$ \hspace{1cm} (4)

The maximum routing intensity $\nu : \mathcal{X} \rightarrow \mathbb{R}^*_+$ is defined by

$$\nu(x) = \sum_{k \in K} \nu_k \mathbf{1}_{\{\exists i \in I_k, x+e_i \in \mathcal{X}\}}.$$ \hspace{1cm} (5)

Clearly, the intensity h of any routing satisfies: $\forall x \in \mathcal{X}, \ h(x) \leq \nu(x)$.

Total routing intensity

Arrival intensities constraints

\[\forall k \in K, \quad \sum_{i \in I_k} \lambda_i(x) \leq \nu_k \]

(3)

Maximum total routing intensity

The intensity \(h : X \rightarrow \mathbb{R}_+^* \) of a routing is defined by

\[h(x) = \sum_{i \in I} \lambda_i(x). \]

(4)

The maximum routing intensity \(\nu : X \rightarrow \mathbb{R}_+^* \) is defined by

\[\nu(x) = \sum_{k \in K} \nu_k 1_{\{\exists i \in I_k, x+e_i \in X\}}. \]

(5)

Clearly, the intensity \(h \) of any routing satisfies: \(\forall x \in X, \ h(x) \leq \nu(x) \).
Robustness

Reversibility conditions

We suppose that the service rates are given and balanced:

\[\phi_i(x) = \frac{\Phi(x - e_i)}{\Phi(x)} > 0. \]

Then the network is insensitive to the service distribution if and only if:

\[\lambda_i(x) = \frac{\Lambda(x + e_i)}{\Lambda(x)}. \]

We aim at finding a (sub)-optimal \(\Lambda \).
A 2classes / four states example

Model

Pa

Pab

Pb

Pabc

Simple policies

Insensitive policies

Coordinate-convex non simple policy

Sensitive trunk reservation policies

M. Jonckheere, J. Mairesse (TU/E, LIAFA)
Opt. adm. contr. in balanced net.
Characterization of the balance function

A 'robust' policy π can be characterized by:

- Its state space $\mathcal{X}^\pi \subset \mathcal{X}$.
- Its routing intensity h:

$$\Lambda(x) = \frac{1}{h(x)} \sum_{i=1}^{N} \Lambda(x + e_i).$$
Outline

- Bounds using rectangular functions.
- Recursive formula.
- The case of one arrival process.
- The case of several arrival processes with admission control (only).
Basic functions

Rectangular balance functions

Define a policy having an hyper-rectangle \(\{x \leq y\} \) as state space and routing intensity \(g \).

The corresponding rectangular balance function \(\tilde{\Lambda}^{y,g} : \mathbb{N}^I \rightarrow \mathbb{R}_+ \) associated with \(y \) and \(g \) is defined by:

\[
\tilde{\Lambda}^{y,g}(x) = \begin{cases}
1 & \text{if } x = y \\
 g(x)^{-1} \sum_{i \in I} \tilde{\Lambda}^{y,g}(x + e_i) & \text{if } x \leq y, x \neq y \\
0 & \text{otherwise}
\end{cases}
\]

This policy is not necessarily admissible!
For instance if \(g(x) = \nu(x), \forall x \).
Rectangular balance functions

Define a policy having an hyper-rectangle \(\{ x \leq y \} \) as state space and routing intensity \(g \).

The corresponding rectangular balance function \(\tilde{\Lambda}^{y,g} : \mathbb{N}^I \to \mathbb{R}_+ \) associated with \(y \) and \(g \) is defined by:

\[
\tilde{\Lambda}^{y,g}(x) = \begin{cases}
1 & \text{if } x = y \\
\frac{g(x)^{-1}}{1} \sum_{i \in I} \tilde{\Lambda}^{y,g}(x + e_i) & \text{if } x \leq y, x \neq y \\
0 & \text{otherwise}
\end{cases}
\]

This policy is not necessarily admissible!

For instance if \(g(x) = \nu(x), \forall x \).
Consider the restriction of a rectangular balance function to a set \(Y \subset X \).

Proposition

The blocking probability of the policy associated with \(\tilde{L}_Y^g \) satisfies

\[
B_p(L_Y^g) = 1 - \frac{\sum_{j \in K} p_j \nu_j^{-1} \sum_{i \in \mathcal{I}_j} P_i(y, g)}{C(y, g)}. \tag{6}
\]

The quantities \(P^i \) and \(C \) can be computed using the recursive schemes:

\[
C(y, g) = 1_{\{y \in X\}} + \sum_i C(y - e_i, g) \phi_i(y) g(y - e_i)^{-1}, \tag{7}
\]
\[
P_j(y, g) = \phi_j(y) 1_{\{y - e_j \in X\}} + \sum_i P_j(y - e_i, g) \phi_i(y) g(y - e_i)^{-1}. \tag{8}
\]
Upper Bounds

For any balance function define the (weighted) blocking probability by:

\[B_p = \sum_{x \in X} \pi(x) \sum_{k \in K} p_k \left(1 - \frac{\sum_{i \in I_k} \lambda_i(x)}{\nu_k} \right) \] \hspace{1cm} (9)

Theorem

For any 'robust' admissible policy \(\pi \) associated with a balance function \(\Lambda \).

\[B_p(\Lambda) \geq \min_{y \in \mathcal{X}} B_p(\Lambda^y, \nu) \] \hspace{1cm} (10)

Proof. One can decompose any balance function \(\Lambda \) as:
\[\Lambda = \sum_{y \in \mathcal{X}} c_y \Lambda^y, \nu \]
The blocking probability is a linear function of \textit{normalized} balance functions.
Upper Bounds

For any balance function define the (weighted) blocking probability by:

\[B_p = \sum_{x \in \mathcal{X}} \pi(x) \sum_{k \in \mathcal{K}} p_k \left(1 - \frac{\sum_{i \in \mathcal{I}_k} \lambda_i(x)}{\nu_k} \right). \]

(9)

Theorem

For any 'robust' admissible policy \(\pi \) associated with a balance function \(\Lambda \).

\[B_p(\Lambda) \geq \min_{y \in \mathcal{X}} B_p(\Lambda^y,\nu). \]

(10)

Proof. One can decompose any balance function \(\Lambda \) as:

\[\Lambda = \sum_{y \in \mathcal{X}} c_y \Lambda^y,\nu. \]

The blocking probability is a linear function of normalized balance functions.
Decentralized balance functions

The decentralized policies works as follows. Do not accept customers outside the region \(y^\downarrow \). Inside the region \(y^\downarrow \cap X \), all possible customers are accepted, except in points \(x \in y^\downarrow \cap X \) such that

\[
\exists k \in K, \exists i, j \in I_k, \quad x + e_i \in y^\downarrow \cap X, \quad x + e_j \in y^\downarrow \cap X^c.
\]

These policies can be thought of as restriction (to the state space) of rectangular policies. Define \(g \) as the arrival intensity of such policies.

Lower bound

\[
B_p(\Lambda^*) \leq \min_{y \in X} B_p(\Lambda^y; g).
\]
Decentralized balance functions

The decentralized policies works as follows. Do not accept customers outside the region $y \downarrow$. Inside the region $y \downarrow \cap \mathcal{X}$, all possible customers are accepted, except in points $x \in y \downarrow \cap \mathcal{X}$ such that

$$\exists k \in \mathcal{K}, \exists i, j \in \mathcal{I}_k, \quad x + e_i \in y \downarrow \cap \mathcal{X}, \quad x + e_j \in y \downarrow \cap \mathcal{X}^c.$$ \hfill (11)

These policies can be thought of as restriction (to the state space) of rectangular policies. Define g as the arrival intensity of such policies.

Lower bound

$$B_p(\Lambda^*) \leq \min_{y \in \mathcal{X}} B_p(\Lambda^{y \downarrow}, g).$$ \hfill (12)
Outline

- Bounds using rectangular functions.
- Recursive formula.
- The case of one arrival process.
- The case of several arrival processes with admission control (only).
In that case, the rectangular balance functions with intensity $\nu(\cdot)$ are **admissible** and extremal. Hence, the upper bound and the lower bound defined previously coincide.

Recursive formula for the optimal blocking probability

\[
(B(\Lambda^y))^{-1} = 1 + \sum_{i \in \mathcal{I}} \frac{\phi_i(y)}{\nu} (B(\Lambda^{y-e_i}))^{-1},
\]

(13)
One class of arrivals

In that case, the rectangular balance functions with intensity $\nu(\cdot)$ are admissible and extremal. Hence, the upper bound and the lower bound defined previously coincide.

Recursive formula for the **optimal** blocking probability

$$(B(\Lambda^y))^{-1} = 1 + \sum_{i \in \mathcal{I}} \frac{\phi_i(y)}{\nu}(B(\Lambda^{y-e_i}))^{-1},$$

(13)
Outline

- Bounds using rectangular functions.
- Recursive formula.
- The case of one arrival process.
- The case of several arrival processes with admission control (only).
A Ferrers set is a finite subset E of \mathbb{N}^k such that:

$$[x \in E, x_i > 0] \implies x - e_i \in E.$$

Denote $\mathcal{F}(\mathcal{X})$ the set of Ferrers set contained in \mathcal{X}.

Definition

Consider a Ferrers set $C \in \mathcal{F}(\mathcal{X})$. The coordinate-convex balance function associated with C is defined by,

$$\tilde{\Lambda}^C(x) = \prod_i \nu_i^{x_i} 1_{x \in C}.$$

Corresponds to a coordinate-convex policy: if $x + e_i \in C$, then $\lambda_i(x) = \nu_i$, if $x + e_i \notin C$, then $\lambda_i(x) = 0$.

\begin{itemize}
 \item \textbf{Admission control}
 \item \textbf{Coordinate convex balance functions}
 \item \textbf{Ferrers set policies}
\end{itemize}
Coordinate convex balance functions

Ferrers set policies

A Ferrers set is a finite subset E of \mathbb{N}^k such that:

$$[x \in E, x_i > 0] \implies x - e_i \in E.$$

Denote $\mathcal{F}(\mathcal{X})$ the set of Ferrers set contained in \mathcal{X}.

Definition

Consider a Ferrers set $\mathcal{C} \in \mathcal{F}(\mathcal{X})$. The coordinate-convex balance function associated with \mathcal{C} is defined by,

$$\tilde{\Lambda}^{\mathcal{C}}(x) = \prod_{i} \nu_i^{x_i} 1_{x \in \mathcal{C}}.$$

Corresponds to a coordinate-convex policy: if $x + e_i \in \mathcal{C}$, then $\lambda_i(x) = \nu_i$, if $x + e_i \notin \mathcal{C}$, then $\lambda_i(x) = 0$.
A 2 classes / four states example

- Simple policies
- Insensitive policies
- Coordinate-convex non simple policy
- Sensitive trunk reservation policies
Extremal balance functions

Extremal policies

Theorem

An admissible balance function Λ can be decomposed as:

$$\Lambda(x) = \sum_{C \in \mathcal{F}(X)} \beta(C) \Lambda^C(x),$$

with $\beta(C) \geq 0$ for all C and $\sum_{C \in \mathcal{F}(X)} \beta(C) = 1$.
Recursive evaluation

Recursion from $C \cup \{x\}$ to C

Lemma

Consider a Ferrers set $C \in \mathcal{F}(X)$ and the corresponding coordinate-convex policy. For a point $x \notin C$ such that $C \cup \{x\}$ is also a Ferrers set, we have:

$$C(C \cup \{x\}) = C(C) + \tilde{\Lambda}_d(x)\Phi(x),$$

$$P_j(C \cup \{x\}) = P_j(C) + \tilde{\Lambda}_d(x)\Phi(x - e_j).$$
Comparing \mathcal{C} and $\mathcal{C} \cup \{x\}$

Lemma

Consider the coordinate-convex policy associated with $\mathcal{C} \in \mathcal{F}(\mathcal{X})$ and let x be a point such that $\mathcal{C} \cup \{x\} \in \mathcal{F}$. Let $X^\mathcal{C}$ be a r.v. distributed as the stationary number of customers. We have:

$$1 - B_p(\Lambda^\mathcal{C}) = \sum_{i \in \mathcal{I}} \frac{p_i}{\nu_i} E[\phi_i(X^\mathcal{C})].$$

Furthermore, the blocking probabilities satisfy:

$$[B_p(\Lambda^{\mathcal{C}\cup\{x\}}) \leq B_p(\Lambda^\mathcal{C})] \iff \left[\sum_{i \in \mathcal{I}} \frac{p_i}{\nu_i} E[\phi_i(X^\mathcal{C})] \leq \sum_{i \in \mathcal{I}} \frac{p_i}{\nu_i} \phi_i(x) \right]. \quad (16)$$

Allows to give conditions under which a complete sharing is optimal.
A 2 classes / four states example
A 2classes / four states example
A 2classes / four states example
Conclusion

- The situation becomes more complex for several arrival processes...
- Generic structure of the optimal 'robust' policy still unknown.

- Computable bounds, tight for large networks at moderate loads.
- Complete characterization of extremal/optimal policies for networks with admission control only. Theoretical grip on the structures of optimal policies.

Open question

- When are decentralized policies optimal? (Leino & Virtamo examples).