CONTROL FORMULATIONS IN THE NONDEGENERATE SLOWDOWN DIFFUSION REGIME

Rami Atar
Technion, Israel
atar@ee.technion.ac.il

with

Itai Gurvich
Northwestern, USA

Nir Solomon
Technion, Israel
I. Introduction
Heavy traffic diffusion regimes

Consider a queue with multiple servers

Parametrize by letting

\[\lambda_n \approx n, \quad N_n \approx n^\alpha, \quad \mu_n \approx n^{1-\alpha}, \]

where \(0 \leq \alpha \leq 1 \), so that \(\lambda_n \approx N_n \mu_n \).

Obtain:

\[\alpha = 0 \quad \text{Conventional} \]
\[\alpha = 1 \quad \text{Halfin-Whitt} \]

Define slowdown = sojourn time / service time

Slowdown is degenerate at both endpoints
When is the slowdown nondegenerate?

Consider $\alpha = 1/2$.

$$\lambda_n \approx n, \quad N_n \approx n^{1/2}, \quad \mu_n \approx n^{1/2}$$

Clearly the service time $\approx n^{-1/2}$

Obtain

$$\text{DELAY} \sim \text{SERVICE TIME}$$
Earlier work (the case of M/M/N):

* Whitt (Oper. Res., 2003): Convergence of queuelength and delay processes to a RBM ($\alpha = 1/2$)

* Mandelbaum and Shaikhet (Mandelbaum’s EURANDOM lecture notes, 2003): independently, a similar result, ($\alpha = 1/2$); observe that the delay and the time in service are of the same order

* Gurvich (M.Sc. Thesis, 2004): Convergence of queuelength/delay processes to a RBM for $\alpha \in [\frac{1}{2}, 1)$.

The above works regard this as a part of the **Efficiency Driven regime** (the diffusion being RBM, the probability of delay being close to 1)
Our point of view

* The joint law of delay and time in service is interesting

* $\alpha = 1/2$ is the only case where the limit is a nondegenerate pair of processes

* The limiting joint law (and in particular the limiting sojourn time law) is distinct from that under the other two diffusion regimes

We will refer to it as the Non-Degenerate Slowdown (NDS) regime
II. Some diffusion limit results
Model

renewal arrivals each requiring a single non-interruptible service

routing mechanism

N_n heterogenous exponential servers

$\mu_1 \quad \mu_2 \quad \cdots \quad \mu_{N_n}$
Assumptions. The NDS Regime ($\alpha = 1/2$)

- **Arrivals**: $\lambda_n = \lambda n + \hat{\lambda} n^{1/2} + o(n^{1/2})$
- **Number of servers**: $N_n = n^{1/2} + o(n^{1/2})$
- **Individual service rates**: $\mu_1 n, \mu_2 n, \ldots, \mu_N n$
- With $\mu_n = \sum_{k=1}^{N_n} \mu_{kn}$, $n^{-1} \mu_n \to \mu \in (0, \infty)$
 $\hat{\mu}_n = n^{-1/2} (\mu_n - n \mu) \to \hat{\mu} \in (-\infty, \infty)$
- **Critical load condition**: $\lambda = \mu$
Assumptions (cont.)

• The empirical measure of \(\{ \hat{\mu}_{kn} := \mu_{kn} n^{-1/2} \} \) converges weakly, namely

\[
\frac{1}{N_n} \sum_{k=1}^{N_n} \delta \hat{\mu}_{kn} \to m,
\]

for some probability measure \(m \) on \(\mathbb{R}_+ \).
Assumptions on the routing policy

- Work conserving
- Nonanticipating

Includes, for example,

- Always route to the slowest available server
- Always route to the fastest available server
Processes of interest

\(\Delta_n(t) = \) delay experienced by the first customer to arrive at or after time \(t \)

\(\Sigma_n(t) = \) time in service of the same customer

Diffusion scaling:

\[\hat{\Delta}_n = n^{1/2} \Delta_n \quad \hat{\Sigma}_n = n^{1/2} \Sigma_n \]
AT = Arrival Time
RT = Routing Time
DEP = Departure Time
AB = Abandonment Time
\(\Delta \) = Delay
\(\Sigma \) = Service Time
THEOREM: The joint law of \((\hat{\Delta}_n, \hat{\Sigma}_n)\) converges to

\((\text{RBM}, f\text{-White noise})\)

in finite dimensional distributions. That is, given \(j\) and \(0 < t_1 < \cdots < t_j < \infty\), we have

\[
(\hat{\Delta}_n(t_1), \hat{\Sigma}_n(t_1), \ldots, \hat{\Delta}_n(t_j), \hat{\Sigma}_n(t_j)) \Rightarrow (\bar{\xi}(t_1), \eta_1, \ldots, \bar{\xi}(t_j), \eta_j),
\]

were, \(\bar{\xi} = \xi / \mu\), \(\xi\) is the RBM

\[
\xi(t) = \xi_0 + (\hat{\lambda} - \hat{\mu})t + \sigma w(t) + l(t),
\]

and \(\eta_i\) are independent of \(\xi\), i.i.d., with p.d.f.

\[
f(x) = \frac{1}{\mu} \int y^2 e^{-y x} m(dy), \quad x \in [0, \infty).
\]
Interpretation of f

* Draw a random variable Y from the distribution

$$\frac{ym(dy)}{\int zm(dz)}$$

* Let η be exponentially distributed with mean Y.
Extension to case with abandonment

Customers abandon the queue while waiting to be served, at fixed rate \(\gamma \) (according to an exponential clock).

The result holds, with

\[
\xi(t) = \xi_0 + (\hat{\lambda} - \hat{\mu})t - \gamma \int_0^t \xi(s)ds + \sigma w(t) + l(t)
\]
Expressions for slowdown (formal)

Without abandonment ($\gamma = 0$) need to assume $\hat{\lambda} - \hat{\mu} < 0$, and then

$$\text{slowdown} = 1 + \frac{\sigma^2}{2(\hat{\mu} - \hat{\lambda})}$$

With abandonment ($\gamma > 0$)

$$\text{slowdown} = 1 + \frac{\int_0^\infty x e^{-\frac{(x-b)^2}{2c^2}} \, dx}{\int_0^\infty e^{-\frac{(x-b)^2}{2c^2}} \, dx}$$

where $(b, c^2) = \left(\frac{\lambda - \mu}{\gamma}, \frac{\sigma^2}{2\gamma}\right)$.

III. Control formulations
Control to minimize sojourn time

- As a diffusion-limited control problem, this set us is meaningful only in the NDS regime
The heavy traffic condition

Following Harrison and Lopez (1999), consider the linear program

Minimize $\rho \in [0, 1]$ s.t. $\sum_j \mu_{ij} \xi_{ij} = \lambda_i, \ \forall i, \ \xi_{ij} \geq 0, \ \forall (i, j), \ \sum_i \xi_{ij} \leq \rho, \ \forall j$

The HT condition: There exists a unique optimal solution (ξ^*, ρ^*), $\rho^* = 1$. Moreover, $\sum_i \xi_{ij}^* = 1$
The complete resource pooling condition

\[i \sim j \] — an activity
\[\xi^*_{ij} > 0 \] — a basic activity

The CRP condition:
* Uniqueness of solutions to a dual program (Harrison and Lopez 1999)
* The graph \(G_b \), of basic activities, is connected (Harrison and Lopez 1999)
* The graph \(G_b \) is a tree (Williams 2000)

Significance:
* High level of cooperation between service stations, so stations work like a single super-server
* Workload is one-dimensional
The diffusion scaling

Denote

\[Q^n_i(t) = \text{number of class-}i \text{ customers in the queue at time } t \]

\[X^n_i(t) = \text{number of class-}i \text{ customers in the system at time } t \]

\[\hat{Q}^n_i(t) = n^{-1/2} Q^n(t), \quad i = 1, 2, \ldots, I \]

\[\hat{X}^n_i(t) = n^{-1/2} \left(X^n_i(t) - \sum_j \xi^*_i j N^n_j \right), \quad i = 1, 2, \ldots, I \]
The diffusion control problem (Harrison-Lopez 1999)

The DCP consists of r.v.s $X_{0,i}$, BMs W_i, and processes X_i, I_j, Y_{ij}:

$$X_i(t) = X_{0,i} + W_i(t) + \sum_j \mu_{ij} Y_{ij}(t) \geq 0, \quad t \geq 0, i = 1, 2, \ldots, I,$$

$$I_j := \sum_i Y_{ij} \text{ is non-decreasing and } I_j(0) \geq 0, \quad j = 1, 2, \ldots, J,$$

$$Y_{ij} \text{ is non-increasing and } Y_{ij} \leq 0, \quad (i, j) \in \mathcal{E}_{nb}.$$

REM: Y_{ij} are further required in Harrison-Lopez to be adapted; one can drop this requirement (Bell-Williams 2000)
An equivalent DCP

Harrison-Lopez 1999, Mandelbaum-Stolyar 2004

\[X(t) = X_0 + W(t) + Z(t) \in \mathbb{R}^I_+, \quad t \geq 0, \]

\[\theta' Z \text{ is nondecreasing, and } \theta' Z(0) \geq 0 \]

Here, \(\theta \in \mathbb{R}^I_+ \) is a fixed vector (the workload vector).

THEOREM (with Itai Gurvich): The two diffusion control problems are equivalent.
IV. DCP for sojourn time -
an explicit solution
DCP for sojourn time

CASE OF A SINGLE POOL

* Nonlinear cost is of interest

We will consider \(\text{COST} = \sum_i c_i E \left[\left(\frac{X_i(t)}{\mu_i} + \Sigma_i \right)^2 \right] \)

\(\Sigma_i \)-r.v.s representing service time

* Easy to reduce to \(E[C(X(t))] \)
Solution of DCP

Denote

\[
\rho_i = \frac{\lambda_i}{\mu_i}, \quad \beta_i = \frac{\rho_i^2}{c_i}, \quad i = 1, 2, \ldots, I
\]

THEOREM (with Nir Solomon): The DCP is solved by bringing \(X(t) \) to \(X^*(t) \) s.t.

\[
\frac{X_i^* + \rho_i}{\mu_i} = \frac{\beta_i}{\sum_k \beta_k} \sum_k \frac{X_k^* + \rho_k}{\mu_k}, \quad \text{for all } i
\]
V. Asymptotics
Asymptotics, the conventional regime

BACK TO THE GENERAL CASE (general number of pools, $J \geq 1$; general cost C)

In conventional heavy traffic:

* Ata-Kumar (2005) - a discretization approach

* Bell-Williams (2001, 2005) - a threshold policy

* Mandelbaum-Stolyar (2004) - a generalized $c\mu$ rule
Asymptotics, the NDS regime

Let $C : \mathbb{R}_+^I \rightarrow \mathbb{R}_+$ be a continuous function, increasing wrt usual partial order

$$C^*(a) = \min\{C(q) : q \in \mathbb{R}_+^I, \theta'q = a\}$$

Let $q(a)$ be a minimizer. Assumption: q is Lipschitz continuous.

PROPOSED POLICY:

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND: X --- $q(X)$ *

Priority to overloaded classes

In addition, (i) No use of nonbasic activities, (ii) Work conservation.
THEOREM (with Itai Gurvich): Assume C is convex. Fix a finite T. Then under any policy,

$$\liminf_{n \to \infty} \int_0^T C(\hat{Q}^n(t))dt \geq \int_0^T C^*(Q^*(t))dt,$$

where Q^* is the RBM $\Gamma(\theta'X_0 + \theta'W)$.

Moreover, under the proposed policy,

$$\limsup_{n \to \infty} \int_0^T C(\hat{Q}^n(t))dt = \int_0^T C^*(Q^*(t))dt$$
About the lower bound

The LB does not hold in non-integral form.

* Minimality of the Skorohod map is well-known:

Let \(\zeta \in D \). Let \(\eta \in D \) be non-decreasing, \(\eta(0) \geq 0 \). Assume \(\zeta(t) + \eta(t) \geq 0 \), for all \(t \geq 0 \). Then

\[
\zeta(t) + \eta(t) \geq \Gamma[\zeta](t) \equiv \zeta(t) + \sup_{s \leq t} \zeta(s)^-, \quad t \geq 0.
\]
About the lower bound

The integral LB uses the following perturbation lemma about the Skorohod map:

LEMMA (with Itai Gurvich): Let $T > 0$ and $\varepsilon > 0$, $\varepsilon < T$, be given. Let $\zeta \in D$ and assume $\zeta(0) \geq 0$. Let

$$\alpha = \zeta + \eta + \beta,$$

where $\eta \in D$ is non-decreasing, $\eta(0) \geq 0$, $\beta \in D$ satisfies

$$-\varepsilon^2 \leq \int_0^t \beta(s) \, ds \leq \varepsilon^2 \quad t \in [0, T],$$

and $\alpha(t) \geq 0$, $t \in [0, T]$. Then

$$\alpha(t) \geq \Gamma[\zeta](t) + \beta(t) - \text{Osc}(\zeta|_{[0,T]}, \varepsilon) - 3\varepsilon, \quad t \in [0, T].$$
Thank you!