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– Part 1 Gaussian Channels & SINR Cells

– Part 2 Voronoi Tessellations & Boolean Models

– Part 3 Stochastic Geometry Model for SINR Cells

– Part 4 Computational Results

– Part 5 Qualitative Results

– Part 6 Conclusions
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Capacity in bits/second of the Hertzian channel between a transmitter
and a receiver is given by Shannon’s second theorem in the Gaussian case:

θ = B log(1 +
R

W + I
)

– B bandwidth of the frequencies used by the channel;

– R power with which the signal is received;

– W power of thermal noise at the receiver;

– I power of interference (other signals at the receiver).

Hence θ ≥ K iff SINR= R
W+I ≥ T , where the mapping K = f(T ) is

determined by B.
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Φ = {Xi, (Si, Ti)} marked point process

{Xi} points of the p.p. on IRd: location of transmitters

(Si, Ti): mark of point Xi: (Si, Ti) ∈ IR+ × IR+

SINR Cell attached to point X0:

C0(Φ,W ) = {y :
S0l(y −X0)

W + κIφ(y)
≥ T0}

Si: power of transmitter i; W : power of thermal noise;

l(·) attenuation function or path loss; κ: orthogonality factor.

Iφ(y) = ∑

i6=0 Sil(y −Xi): power of interference at y,

C0: set of locations y where channel from X0 can sustain a bit rate of f(T0).
Signal to Interference Cells of a Spatial Point Process

F. Baccelli and B. Blaszczyszyn& %



' $
4

� � � � �� � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Unbounded support examples (for some a, β, R > 0)

1. l(z) ≤ a|z|−β

2. l(z) ≤ a(1 + |z|)−β

3. l(z) = a(max(|z|, R)−β

Bounded support example: l ≤M , l(z) = 0 for |z| > d
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Large shared spectrum;

All users transmit simultaneously (in contrast to what happens in FDMA
or TDMA) which creates some global interference signal;

Transmission i is allocated a spread spectrum signature process ci built
from a pseudo random sequence, which is used to modulate its signal; ci is
used by the receiver to extract the signal of transmission i. from the global
signal.

The orthogonality factor κ is smaller when codes are longer/more exactly
orthogonal sequences and when propagation has less reflections/multiple
paths.
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Directional antennas

C0(Φ,W ) = {y :
L(S0, θ0, y −X0)

W + κIφ(y)
≥ T0}

L(S0, θ0, y − X0) takes into account the distance to the antenna and the
orientation of the antenna (θ0); Iφ defined similarly.

Point dependent fading: for all y and all i, there is a random variable Zi(y)
s.t. the power received at location y from the i th source is SiZi(y)l(y−Xi)
in place of Sil(y −Xi).

Power control: to come in later lectures.
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VARIANTS OF BASIC CDMA MODEL (continued)

(x  , (s  , t  ))0 0 0

y
0

Cluster point processes: possibly more than 1 points at Xi
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For X0 a point of some spatial point process Π = {Xi},
y ∈ VX0 if ||y −X0|| ≤ ||y −Xi||, ∀i 6= 0

Borders of Voronoi Cells

Each point y a.s. belongs to a single Voronoi cell;

Spatial analogue of the intervals of renewal theory
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A Boolean model ΞBM is the union

ΞBM =
⋃

i
Gi ⊕Xi

Φ = {(Xi, Gi)} is an independently marked Poisson p.p. with intensity
measure ν on IRd;

{Xi} points of the Poisson p.p. on IRd;

{Gi} sequence of i.i.d random compact sets; G⊕ x = {y + x : y ∈ G}.
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BOOLEAN MODEL – GERM GRAIN MODEL (continued)

Example

{Si} sequence of integrable i.i.d. non-negative random variables, indepen-
dent of the PPP;

b(u, x): closed ball centered in u and with radius |x|: Gi = b(0, Si).
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The expected number of grains (sets Gi⊕Xi) hitting a given bounded set
B is

IE[#{(Xi, Gi) ∈ Φ : B ∩Gi ⊕Xi 6= ∅}] = IE[ν(B ⊕ Ǧ)] ,

G is a generic (typical) random variable of the sequence {Gi}
B ⊕ Ǧ = {x + y : x ∈ B,−y ∈ G}.

In the stationary case, proof based on Campbell’s Theorem.

Spatial analogue of the M/GI/∞ queue.

Example: homogeneous case with balls: Ξ is a random closed set if the
radius of balls have moments of order d (2 in the plane);
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The point process of the germs whose grain intersect compactK is Poisson
of intensity measure of density

λp(x) = λIP (x +G ∩K 6= ∅).

The distribution of the number of grains intersecting compactK is Poisson
of parameter λIE|K ∩ Ǧ|.

The number of grains covering location x is Poisson of parameter.
λIE|G|.

The capacity functional of the coverage process is

TΞ(K) = IP (Ξ ∩K 6= ∅) = 1 − e−λIE|K∩Ǧ|.
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Default option: non homogeneous Poisson point process with intensity
measure ν, i.i.d. marks, κ = 1:

1. Is the model well-defined? Under some moment conditions for W and
S, each particular cell Ci = Ci(Φ, ,W ) as well as the union Ξ are random
closed sets.

2. What can we calculate?
Probability for a typical cell to cover one or more locations (cell volume
etc.);
Distribution of the number of cells covering a given location (hand-off
degree).

3. Relation to known models For some limit values of parameters, Ξ con-
verges to a Boolean model or the Poisson-Voronoi tessellation + Ex-
pansions.
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cells without point dependent fading

[a]

cells with point dependent fading

[b]

Φ = {Xi, (Si, Ti))} — marked Poisson point process on IR2.
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A necessary and sufficient condition for the Shot Noise Process IΦ(y) to have
finite expectation is

IE[IΦ(y)] = IE[S]
∫

IRd l(y − x) ν(dx) <∞.

THEOREM
Suppose l(·) is continuous and for each y ∈ IRd ∃ a ball b(y, δy) s.t.

∫

IRd sup
z∈b(y,δy)

l(z − x) ν(dx) <∞ .

If IE[S] <∞, then with probability one the function

IΦ(y) =
∑

i
Sil(y −Xi)

is continuous with respect to y.
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RANDOM CLOSED SET CONDITIONS FOR A SINGLE CELL (continued)

From Campbell’s Theorem + Lebesgue dominated convergence theorem
(extends to stationary point processes).

COROLLARY
Each particular cell

Ci = {y :
Sil(y −Xi)

W + IΦ(y)
≥ Ti}

is a random closed set.

Signal to Interference Cells of a Spatial Point Process
F. Baccelli and B. Blaszczyszyn& %



' $
20

�� � � � � � � � � � � � � � � � � � � � � � � � � � � Ξ

Assumptions: homogeneous PPP; conditions of the previous theorem
THEOREM For all bounded sets B, IE[#{Ci : B ∩ Ci 6= ∅}] < ∞ and Ξ
is a random closed set if one of the following conditions is satisfied:

(a) finite range of attenuation function: l(z) = 0 for |z| > R∗.

(b) presence of noise W :

l(z) ≤ a(1 + |z|)−β for some a, β > 0

and

IE[(S/T )d/β] <∞, IE[W−d/β] <∞

(c) no noise W : l(z) as above, IE[S−d/β] <∞ and for ach R > 0,
∫

IRd e
−λbd|x|

d
(l(|x| +R))−d/β dx <∞ , where l(r) = inf

|z|≤r
l(z).
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RANDOM CLOSED SET CONDITIONS FOR Ξ (continued)

In particular under any of the above assumptions, Ky, the number of cells
covering point y, has finite expectation.
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C0 = {y :
s0l(y − x0)

w + Iφ(y)
≥ t0}

⊂ {y : l(y − x0) ≥
w

s0/t0
}

⊂ {y : |y − x0| ≤ (
as0/t0
w

)1/β} = b(x0, (
as0/t0
w

)1/β) .

Ci ⊂ b(Xi, ρi) , with ρi = (
aSi/Ti
W

)1/β .
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Φ marked Poisson point process representing antennas in IRd,

(x, (S, T )) additional antenna located at fixed location x with random
mark (S, T ) distributed as any mark of Φ, independent of it,

y location (of a customer) in IRd.

Probability of covering y by the cell attached to the additional antenna:

px(y) = IP ( y ∈ C(x, S, T ; Φ,W ) )

= IP (
S

T
l(y − x) −W − IΦ(y) ≥ 0 ) .
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px(y) can be obtained via a singular contour integral from the Laplace
transforms of the RV’s (S, T ), W and IΦ(y) which are independent (Slyv-
niak’s th.);

THEOREM

the Laplace transform of IΦ(y) is given by

ΨIΦ(y)(ξ) = IE[exp(−ξIΦ(y))] = exp[−
∫

IRd(1 − ΨS(ξl(y − z))) ν(dz)] ,

where ΨS(ξ) = IE[e−ξS] is the Laplace transform of S

Integral representation: if the real valued random variable Y has a density
and Fourier transform ψ(ξ) = IE[exp(−iξY )], ξ ∈ IR, then

IP (Y ≥ 0) =
1

2
−

1

2iπ

∫

IR

ψ(ξ)

ξ
dξ,
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Exponential powers with parameter µ

px(y) = IP (S ≥
T

l(y − x)
(W + IΦ(y)) )

=
∫

t

∫

u e
−µ ut

l(y−x)IP (W + IΦ(y) = du )IP (T = dt )

=
∫

t ΨW









µt

l(y − x)








ΨIΦ(y)









µt

l(y − x)








IP (T = dt )

For constant threshold T and exponential power:

px(y) = ΨW
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For constant threshold T , exponential power homogeneous PPP:

p0(y) = ΨW
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−2πλ
∫ ∞
0
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1 + l(y)/(T l(u))
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– d = 2 and ν(x) ≡ 1;

– l(z) = (max(|z|, R)−4

– S ∈ IR+ exponential with mean m = 1/µ;

ψIΦ(ξi) = IE[e−iξIΦ] = exp
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– d = 2 and ν(x) ≡ λdx;

– l(z) = |z|−β, W ≡ 0;

– T deterministic and S exponential with mean m = 1/µ;

If β > 2

∫ ∞
0

u

1 + l(y)/(T l(u))
du =

|y|2T 2/β

β
Γ(2/β)Γ(1 − 2/β) ,

Hence

p0(y) = e−λ|y|
2T 2/βK ,

with K = K(β) = (2πΓ(2/β)Γ(1 − 2/β))/β.
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A(x) = A(C(x, S, T ; Φ,W )): volume of the cell added at point x.

Mean volume in the M/GI case:

E[A(x)] = E
∫

IRd 1y∈C(x)dy =
∫

IRd px(y)dy.

Mean volume in the M/M case of Scenario 2:

E[A(0)] = 2π
∫ ∞
0 e−λr

2T 2/βKrdr =
1

λT 2/β

β

2Γ(2/β)Γ(1 − 2/β)
.
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(y1, y2) locations to be respectively covered by the cells C(x1, S1, T1; Φ +
δx2,S2,T2,W ) and C(x2, S2, T2; Φ + δx1,S1,T1,W )

Similar analysis from the joint Laplace transform of (IΦ(y1), IΦ(y2)), which
is given by

IE[exp(−ξ1IΦ(y1) − ξ2IΦ(y2))] =

exp[−
∫

IRd(1 − ΨS(ξ1l(y1 − z) + ξ2l(y2 − z))ν(dz)] .
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Given: n cells C(xi, si, ti;φ,w), i = 1, . . . , n
THEOREM The inequality

n
∑

i=1
ti < 1

is a necessary condition for ⋂n
i=1C(xi, si, ti;φ,w) 6= ∅.

PROOF The set of inequalities

sil(y − xi)

w + ∑n
i=1 sil(y − xi)

≥ ti (i = 1, . . . , n)

implies

1 −
w

w + ∑n
i=1 sil(y − xi)

≥
n
∑

i=1
ti

and for w > 0 the LHS is strictly less than 1.
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OVERLAPPING CELLS (continued)

COROLLARY If the distribution of T is such that

T ≥ τ a.s, for some τ > 0,

then the number Ky of cells of Ξ covering any location y is a.s. bounded

Ky < 1/τ.

Spatial analogue of s server queue: no location can be covered by s = 1/τ
or more cells, no matter how close they are and how strong their signals
are.
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� � � � � � �� �� � �� � � � � � � � � � � � � � � � � � � � �

Ky � �� � � � � � y

THEOREM
The factorial moment of Ky : IE[K(n)

y ] = IE[Ky(Ky− 1) . . . (Ky−n+ 1)+]
is given by:
∫

(IRd)n IP (y ∈
n
⋂

k=1
C(xk, Sk, Tk; Φ +

n
∑

i=1
i6=k

ε(xi,(Si,Ti)),W ))ν(dx1) . . . ν(dxn) .

Computational aspect: FIΦ(x)(·): distribution function of the shot-noise
process at x:

IP (y ∈
⋂

k
C(...)) = IE[FIΦ(y)( min

1≤k≤n
Sk/Tk l(y− xk)−

n
∑

k=1
Skl(y− xk)−W )].
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K(n)
x = IE

∫

(IRd×IR+×(0,1))n
n
∏

k=1
1

(

x ∈ C(xk, sk, tk; Φ − εxk,(sk,tk)),W
)

×Φ(n) (d ((x1, . . . , xn), ((s1, . . . , sn), (t1, . . . , tn))))

with Φ(n) the n-th factorial power of Φ.

Apply the refined Campbell theorem to the expectation of this integral
and the fact that the reduced Palm distribution of the Poisson p.p. is equal
to the original distribution.
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For a homogeneous Poisson point process with intensity λ

IE[K0] = λIE[A(C(0, S, T ; Φ,W ))] ,

where A(C(. . .)) is the surface of the typical cell: Analogue of Little’s
law.

The volume fraction p (fraction of the space covered by Ξ) is given by

p =
∞
∑

k=1

(−1)k+1

k!
IE[(K0)

(k)]

whenever T ≥ τ a.s. (then the summation is over 0 ≤ k < 1/τ ).
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� � � �� �� � �� � � � � � � � � � � � �� � � � � � � � � � �

� � � � �� � � � � � �

Ξκ the coverage process generated by the Poisson point process

Φ = {(Xi, (Si, Ti))}

in the presence of the orthogonality factor κ.

Basic observation the sets

Cκ
i = {y : Si l(y −Xi) ≥ WTi + IΦ(y)Tiκ}

are increasing when κ→ 0.

Equivalent formulation with κ ≡ 1: W → ∞ and T → 0 in such a way
that WT = cst.
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QUALITATIVE RESULTS: CONVERGENCE TO A BOOLEAN MODEL (continued)

THEOREM

Ξκ κ→0−→ Ξ̃ a.s

where
Ξ̃ = Ξ̃(Φ;W ) =

⋃

(Xi,(Si,Ti))∈Φ
C̃(Xi, Si, Ti;W )

is a conditional Boolean model with cells

C̃(Xi, Si, Ti;w) = {y ∈ IRd : Si l(y −Xi) ≥ wTi}

independent given W = w.

Under regularity conditions on l(·), we also have

– convergence on the space of closed sets,

– convergence of the capacity functionals (of the typical cell and the union).
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Simulation of the coverage process Ξ(Φ;W ) “on its way” to a Boolean
model

There are 60 points on the square [−5, 15]2 (making λ = 0.15) with S
uniformly distributed on [0, 2]

The observation window is [0, 10]2,

l(y) = (1 + |y|)−3,

a) T = 0.4, W = 0.25, b) T = 0.2, W = 0.5, c) T = 0.1, W = 1;
d) T = 0.0001, W = 1000

In the limiting case, each cell is a disk with independent radius distributed
as (S/(WT ))1/3 − 1 = (10S)1/3 − 1 with the mean ≈ 1.035.
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a) T = 0.2, W = (0.1)3, b) T = 0.2 · 10−2, W = (0.1)2, c) T = 0.4 · 10−4,
W = 5; d) T = 0.2 · 10−5, W = 100

In the limiting case, each cell is a disk with independent radius distributed
as (S/(WT ))1/3 − 1 = (5000S)1/3 − 1 with mean ≈ 16.15.
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p(κ)
x (y) = IP (S0l(y − x) ≥ WT0 + κT0IΦ(y)) .

Continuity result under technical conditions,

p(κ)
x (y) = IP (S0l(y − x) ≥WT0) + o(1), κ→ 0.
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Perturbation formula (assuming Ti > 0 a.s.) Let

F∗(u) = IP (
S0

T0
l(y − x) −W < u) .

If F∗ admits the following expansion at 0:

F∗(u) = F∗(0) +
h
∑

k=1

F (k)
∗ (0)

k!
uk + R(u) and R(u) = o(uh) u↘ 0.

Then

p(κ)
x (y) = IP (S0l(y − x) ≥ WT0) −

h
∑

k=1
κk
F (k)
∗ (0)

k!
IE[(IΦ(y))k] + o(κh) ,

provided IE[(IΦ(y))h] <∞.
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PERTURBATION FORMULAS (continued)

Idea of proof (order 1):

IP (S0l(y − x) ≥ WT0 + κT0IΦ(y))

= IP (S0l(y − x) ≥ WT0) − IP (0 ≤
S0

T0
l(y − x) −W < κIΦ(y))

= IP (S0l(y − x) ≥ WT0) − IE(F∗(κIΦ(y)) − F∗(0))

= IP (S0l(y − x) ≥ WT0) − κIE[(IΦ(y))]F (1)
∗ (0) + o(κ).
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a) Exact values of px(y) (dashed line, obtained from the singular integral
representation) and the first, second, 14-th and 15-th order approximation
of p(κ)

x (y). b) Similar approximation for the mean area of the typical cell.
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Ξn = ⋃

iC
n
i coverage process generated by the Poisson point process with

attenuation function
ln(z) = (1 + |z|)−n

and with W = 0 a.s.
THEOREM

Cn
i

n→∞−→ Vi a.s

where
Vi = {y ∈ IRd : |y −Xi| ≤ inf

Xk∈Φ−εXi

|y −Xk|}

is the Voronoi cell generated by the point Xi of Φ.
Convergence holds on the space of closed sets.
We also have convergence of the volume of the typical cell.
Signal to Interference Cells of a Spatial Point Process
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Simulation of the coverage process Ξ tending to Voronoi tessellation of the
plane

Same window as above

W = 0 and T = 0.2 (allowing for intersections).

l(y) = (1 + |y|)−β with: a) β = 3, b) β = 5, c) β = 12, d) β = 100.

The effect of overlapping is still visible.
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COROLLARY If W = (R + 1)−n then

Cn
i

n→∞−→ Vi ∩ b(Xi, R)

where b(x, r) is the ball centered at x with radius r.
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Simulation of the coverage process Ξ growing to the tessellation of the
plane as in the Johnson-Mehl model;

Window as above;

We take T = 0.5, thus inhibiting any intersections;

l(y) = (1 + |y|)−30, strong enough to give the tessellation covering almost
the whole plane when there is no external noise W ;

W = (1 + R)−30

a) R = 0.4, b) R = 1.2, c) R = 2, d) R = ∞ (W = 0).

All cells start growing at the same time.
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New basic parametric SG model

Contains well known models of SG as particular cases

Corresponds to a sharing of space which is a spatial analogue of multiserver
queues

Questions to be addressed later:

1. infinite components,

2. local interactions,

3. geometry of zones defined by their degree of coverage,
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– Power control: Si may be seen as random at any given time, but in fact
results from joint adaptive schemes; it would make more sense to have
dependencies between the marks of cells;

– Analysis of traffic: Coverage varies with time: dynamical aspects

– Routing protocols, MAC protocols etc.
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